Скорость автокаталитической реакции описывается кинетическим уравнением

Скорость автокаталитической реакции описывается кинетическим уравнением

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ

Конспект лекций для студентов биофака ЮФУ (РГУ)

2.3 КАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ

Скорость химической реакции при данной температуре определяется скоростью образования активированного комплекса, которая, в свою очередь, зависит от величины энергии активации. Во многих химических реакциях в структуру активированного комплекса могут входить вещества, стехиометрически не являющиеся реагентами; очевидно, что в этом случае изменяется и величина энергии активации процесса. В случае наличия нескольких переходных состояний реакция будет идти в основном по пути с наименьшим активационным барьером.

Катализ – явление изменения скорости химической реакции в присутствии веществ, состояние и количество которых после реакции остаются неизменными.

Различают положительный и отрицательный катализ (соответственно увеличение и уменьшение скорости реакции), хотя часто под термином «катализ» подразумевают только положительный катализ; отрицательный катализ называют ингибированием.

Вещество, входящее в структуру активированного комплекса, но стехиометрически не являющееся реагентом, называется катализатором. Для всех катализаторов характерны такие общие свойства, как специфичность и селективность действия.

Специфичность катализатора заключается в его способности ускорять только одну реакцию или группу однотипных реакций и не влиять на скорость других реакций. Так, например, многие переходные металлы (платина, медь, никель, железо и т.д.) являются катализаторами для процессов гидрирования; оксид алюминия катализирует реакции гидратации и т.д.

Селективность катализатора – способность ускорять одну из возможных при данных условиях параллельных реакций. Благодаря этому можно, применяя различные катализаторы, из одних и тех же исходных веществ получать различные продукты:

[Cu]: СО + Н2 ––> СН3ОН

[Al2О3]: С2Н5ОН ––> С2Н4 + Н2О

[Ni]: СО + Н2 ––> СН4 + Н2О

[Cu]: С2Н5ОН ––> СН3СНО + Н2

Причиной увеличения скорости реакции при положительном катализе является уменьшение энергии активации при протекании реакции через активированный комплекс с участием катализатора (рис. 2.8).

Поскольку, согласно уравнению Аррениуса, константа скорости химической реакции находится в экспоненциальной зависимости от величины энергии активации, уменьшение последней вызывает значительное увеличение константы скорости. Действительно, если предположить, что предэкспоненциальные множители в уравнении Аррениуса (II.32) для каталитической и некаталитической реакций близки, то для отношения констант скорости можно записать:

(II.44)

Если ΔEA = –50 кДж/моль, то отношение констант скоростей составит 2,7·10 6 раз (действительно, на практике такое уменьшение EA увеличивает скорость реакции приблизительно в 10 5 раз).

Необходимо отметить, что наличие катализатора не влияет на величину изменения термодинамического потенциала в результате процесса и, следовательно, никакой катализатор не может сделать возможным самопроизвольное протекание термодинамически невозможного процесса (процесса, ΔG (ΔF) которого больше нуля). Катализатор не изменяет величину константы равновесия для обратимых реакций; влияние катализатора в этом случае заключается только в ускорении достижения равновесного состояния.

В зависимости от фазового состояния реагентов и катализатора различают гомогенный и гетерогенный катализ.

Рис. 2.8 Энергетическая диаграмма химической реакции без катализатора (1)
и в присутствии катализатора (2).

2.3.1 Гомогенный катализ.

Гомогенный катализ – каталитические реакции, в которых реагенты и катализатор находятся в одной фазе. В случае гомогенно-каталитических процессов катализатор образует с реагентами промежуточные реакционноспособные продукты. Рассмотрим некоторую реакцию

В присутствии катализатора осуществляются две быстро протекающие стадии, в результате которых образуются частицы промежуточного соединения АК и затем (через активированный комплекс АВК # ) конечный продукт реакции с регенерацией катализатора:

Примером такого процесса может служить реакция разложения ацетальдегида, энергия активации которой EA = 190 кДж/моль:

В присутствии паров йода этот процесс протекает в две стадии:

Уменьшение энергии активации этой реакции в присутствии катализатора составляет 54 кДж/моль; константа скорости реакции при этом увеличивается приблизительно в 105 раз. Наиболее распространенным типом гомогенного катализа является кислотный катализ, при котором в роли катализатора выступают ионы водорода Н + .

Автокатализ – процесс каталитического ускорения химической реакции одним из её продуктов. В качестве примера можно привести катализируемую ионами водорода реакцию гидролиза сложных эфиров. Образующаяся при гидролизе кислота диссоциирует с образованием протонов, которые ускоряют реакцию гидролиза. Особенность автокаталитической реакции состоит в том, что данная реакция протекает с постоянным возрастанием концентрации катализатора. Поэтому в начальный период реакции скорость её возрастает, а на последующих стадиях в результате убыли концентрации реагентов скорость начинает уменьшаться; кинетическая кривая продукта автокаталитической реакции имеет характерный S-образный вид (рис. 2.9).

Рис. 2.9 Кинетическая кривая продукта автокаталитической реакции

2.3.3 Гетерогенный катализ.

Гетерогенный катализ – каталитические реакции, идущие на поверхности раздела фаз, образуемых катализатором и реагирующими веществами. Механизм гетерогенно-каталитических процессов значительно более сложен, чем в случае гомогенного катализа. В каждой гетерогенно-каталитической реакции можно выделить как минимум шесть стадий:

1. Диффузия исходных веществ к поверхности катализатора.

2. Адсорбция исходных веществ на поверхности с образованием некоторого промежуточного соединения:

3. Активация адсорбированного состояния (необходимая для этого энергия есть истинная энергия активации процесса):

4. Распад активированного комплекса с образованием адсорбированных продуктов реакции:

5. Десорбция продуктов реакции с поверхности катализатора.

6. Диффузия продуктов реакции от поверхности катализатора.

Специфической особенностью гетерокаталитических процессов является способность катализатора к промотированию и отравлению.

Промотирование – увеличение активности катализатора в присутствии веществ, которые сами не являются катализаторами данного процесса (промоторов). Например, для катализируемой металлическим никелем реакции

введение в никелевый катализатор небольшой примеси церия приводит к резкому возрастанию активности катализатора.

Отравление – резкое снижение активности катализатора в присутствии некоторых веществ (т. н. каталитических ядов). Например, для реакции синтеза аммиака (катализатор – губчатое железо), присутствие в реакционной смеси соединений кислорода или серы вызывает резкое снижение активности железного катализатора; в то же время способность катализатора адсорбировать исходные вещества снижается очень незначительно.

Для объяснения этих особенностей гетерогенно-каталитических процессов Г. Тэйлором было высказано следующее предположение: каталитически активной является не вся поверхность катализатора, а лишь некоторые её участки – т.н. активные центры , которыми могут являться различные дефекты кристаллической структуры катализатора (например, выступы либо впадины на поверхности катализатора). В настоящее время нет единой теории гетерогенного катализа. Для металлических катализаторов была разработана теория мультиплетов . Основные положения мультиплетной теории состоят в следующем:

1. Активный центр катализатора представляет собой совокупность определенного числа адсорбционных центров, расположенных на поверхности катализатора в геометрическом соответствии со строением молекулы, претерпевающей превращение.

2. При адсорбции реагирующих молекул на активном центре образуется мультиплетный комплекс, в результате чего происходит перераспределение связей, приводящее к образованию продуктов реакции.

Теорию мультиплетов называют иногда теорией геометрического подобия активного центра и реагирующих молекул. Для различных реакций число адсорбционных центров (каждый из которых отождествляется с атомом металла) в активном центре различно – 2, 3, 4 и т.д. Подобные активные центры называются соответственно дублет, триплет, квадруплет и т.д. (в общем случае мультиплет, чему и обязана теория своим названием).

Например, согласно теории мультиплетов, дегидрирование предельных одноатомных спиртов происходит на дублете, а дегидрирование циклогексана – на секстете (рис. 2.10 – 2.11); теория мультиплетов позволила связать каталитическую активность металлов с величиной их атомного радиуса.

Рис. 2.10 Дегидрирование спиртов на дублете

Рис. 2.11 Дегидрирование циклогексана на секстете

2.3.4 Ферментативный катализ.

Ферментативный катализ – каталитические реакции, протекающие с участием ферментов – биологических катализаторов белковой природы. Ферментативный катализ имеет две характерные особенности:

1. Высокая активность , на несколько порядков превышающая активность неорганических катализаторов, что объясняется очень значительным снижением энергии активации процесса ферментами. Так, константа скорости реакции разложения перекиси водорода, катализируемой ионами Fе 2+ , составляет 56 с -1 ; константа скорости этой же реакции, катализируемой ферментом каталазой, равна 3.5·10 7 , т.е. реакция в присутствии фермента протекает в миллион раз быстрее (энергии активации процессов составляют соответственно 42 и 7.1 кДж/моль). Константы скорости гидролиза мочевины в присутствии кислоты и уреазы различаются на тринадцать порядков, составляя 7.4·10 -7 и 5·10 6 с -1 (величина энергии активации составляет соответственно 103 и 28 кДж/моль).

2. Высокая специфичность . Например, амилаза катализирует процесс расщепления крахмала, представляющего собой цепь одинаковых глюкозных звеньев, но не катализирует гидролиз сахарозы, молекула которой составлена из глюкозного и фруктозного фрагментов.

Согласно общепринятым представлениям о механизме ферментативного катализа, субстрат S и фермент F находятся в равновесии с очень быстро образующимся фермент-субстратным комплексом FS, который сравнительно медленно распадается на продукт реакции P с выделением свободного фермента; т.о., стадия распада фермент-субстратного комплекса на продукты реакции является скоростьопределяющей (лимитирующей).

Исследование зависимости скорости ферментативной реакции от концентрации субстрата при неизменной концентрации фермента показали, что с увеличением концентрации субстрата скорость реакции сначала увеличивается, а затем перестает изменяться (рис. 2.12) и зависимость скорости реакции от концентрации субстрата описывается следующим уравнением:

(II.45)

Здесь Кm – константа Михаэлиса, численно равная концентрации субстрата при V = ½Vmax. Константа Михаэлиса служит мерой сродства между субстратом и ферментом: чем меньше Кm, тем больше их способность к образованию фермент-субстратного комплекса.

Характерной особенностью действия ферментов является также высокая чувствительность активности ферментов к внешним условиям – рН среды и температуре. Ферменты активны лишь в достаточно узком интервале рН и температуры, причем для ферментов характерно наличие в этом интервале максимума активности при некотором оптимальном значении рН или температуры; по обе стороны от этого значения активность ферментов быстро снижается.

Рис. 2.12 Зависимость скорости ферментативной реакции от концентрации субстрата.


Copyright © С. И. Левченков, 1996 — 2005.

Скорость автокаталитической реакции описывается кинетическим уравнением

АВТОКАТАЛИЗ, ускорение реакции, обусловленное накоплением конечного или промежуточного продукта, обладающего каталитическим действием в данной реакции. В более широком смысле автокатализ — самоускорение реакции, вызванное к.-л. изменением в системе из-за протекания химической реакции. Автокатализ наблюдается, например, при гидролизе сложных эфиров из-за накопления кислоты.

Для кинетической кривой автокаталитические реакции характерны (см. рис.): период индукции а, когда реакция протекает очень медленно; восходящая ветвь b, соответствующая увеличению скорости реакции где t-время); точка перегиба с в момент времени, когда скорость реакции достигает макс. значенияветвь d, соответствующая уменьшению скорости реакции

Кинетическая кривая накопления продукта в автокаталитической реакции.

Для автокаталитической реакции A->Z, где А-исходное вещество, Z-продукт, обладающий каталитическим действием, скорость реакции во многих случаях описывается уравнением:

где [А] и [Z]-концентрации веществ А и Z, и и т-порядки реакции по этим веществам, k-константа скорости. Для кинетического описания таких реакций удобно использовать безразмерные характеристики: степень превращения x = [Z]/[A]0, где [А]0-концентрация вещества А в момент времени t = 0, и величину Точке перегиба на кинетической кривой и значениюсоответствует степень превращения х

и В таблице при ведены значения и для разных и, т иЕсли реакция катализируется не конечным продуктом, а промежуточным веществом,в момент времени, когда становится максимальной концентрация промежуточного вещества (при малой степени превращения).

СТЕПЕНЬ ПРЕВРАЩЕНИЯ ВЕЩЕСТВА х И МАКСИМАЛЬНАЯ СКОРОСТЬ РЕАКЦИИ ДЛЯ АВТОКАТАЛИТИЧЕСКОЙ РЕАКЦИИ А -> Z (параметры п, т ипояснены в тексте)

Помимо автокаталитических реакций, с самоускорением протекают:

1. Самосопряженные реакции, в которых индуктор — конечный продукт.

2. Цепные реакции, если в исходной смеси присутствует ингибитор. По мере его расходования скорость обрыва цепей уменьшается, соотв. возрастает концентрация активных центров, и реакция ускоряется.

3. Цепные разветвленные реакции в условиях нестационарного режима. Самоускорение вызывается увеличением концентрации активных центров в ходе реакции из-за преобладания разветвления цепей над их обрывом. Так, скорость горения Н2 описывается с достаточной точностью уравнением автокатализа: где х = [02]/[02]0.

4. Окисление органических соединений вследствие образования промежуточных веществ (пероксидов, альдегидов), вызывающих вырожденное разветвление цепей.

5. Радикальная полимеризация при глубоких степенях превращения, когда резко возрастает вязкость среды, замедляется рекомбинация макрорадикалов и вследствие этого увеличивается длина кинетической цепи.

6. Реакции с участием твердых тел, которые локализуются на поверхности раздела твердых фаз реагента и продукта.

7. Сильно экзотермические реакции, когда в условиях нескомпенсированного теплоотвода начинается саморазогрев системы или поверхности катализатора (для каталитических процессов). Саморазогрев может привести к взрывной реакции или «воспламенению» поверхности катализатора.

Во многих случаях скорость самоускоряющихся реакций формально описывается уравнениями, сходными с теми, которые приведены в таблице для автокатализа.

Лит.: Денисов Е. Т., Кинетика гомогенных химических реакций, М., 1978; Кондратьев В. Н., Никитин Е. Е., Химические процессы в газах, М., 1981. с. 18-19. Е.Т.Денисов.

Автокаталитические реакции

Введение

Катализ изменение скорости химической реакции при воздействии веществ (катализаторов), которые участвуют в реакции, но не входят в состав продуктов. Катализатор не находится в стехиометрических отношениях с продуктами и регенерируется после каждого цикла превращения реагентов в продукты. Он не смещает положения равновесия химической реакции и вблизи от равновесия ускоряет прямую и обратную реакции в равной степени.

Автокатализом называется явление, когда каталитическое действие на реакцию оказывает какой-либо из её продуктов.

Целью нашей работыявлялось изучение зависимости константы скорости k автокаталитической реакции окисления щавелевой кислоты перманганатом калия от температуры и определение энергии активации данной реакции.

ЛИТЕРАТУРНЫЙ ОБЗОР

Автокаталитические реакции

Автокаталитическая реакция — реакция, в которой один из её продуктов служит катализатором превращения исходных веществ.

Для автокаталитической реакции характерно, что процесс идёт при возрастающей концентрации катализатора. В начальный период реакции, в период индукции, скорость реакции неизмеримо мала, затем она возрастает и лишь при достижении значительной степени превращения начинает падать в результате убыли концентрации исходных веществ. В результате кинетическая кривая для продукта реакции имеет S-образный вид (рис. 1), подобно кинетической кривой продукта двух последовательных реакций.

D¥
D0

Рис. 1.Кинетическая кривая изменения оптической плотности продукта автокаталитической реакции

Чтобы процесс мог развиться по автокаталитическому пути, в системе с самого начала должен присутствовать продукт реакции. Он может быть специально внесён экспериментатором (начальная затравка) или образовываться без участия катализатора.

В простейшем случае реакции первого порядка по А и В скорость образования продукта превращения равна

(1)

Обозначая через x прирост [B] в результате реакции, т. е. полагая x = [B] – [B]0, и учитывая, что прирост [B] равен убыли [A], получаем следующее выражение:

(2)

Уравнение такого же вида получается в случае, если никакой затравки в систему не вносится, но параллельно с автокаталитическим превращением идёт некаталитическое превращение А в В по реакции первого порядка. В этом случае

(3)

(4)

Интегрирование уравнения (2) дает

(5)

или в виде, разрешенном относительно х,

(6)

Если ввести безразмерные переменные , , то уравнение (6) примет вид

(7)

Если экспериментально получена кинетическая кривая автокаталитической реакции, следующей уравнению (2), то для вычисления константы скорости k пользуемся уравнениями (6 ,7).


источники:

http://ximicat.com/info.php?id=238

http://megaobuchalka.ru/9/40255.html