Скорость движения тела задана уравнением тогда путь

Скорость движения тела задана уравнением тогда путь

Вопрос по математике:

Скорость движения тела задана уравнением v(t)=5/√t (м/с). Тогда путь, пройденный телом за 9 секунд от начала движения, равен …

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1
Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

Урок математики по теме «Применение интеграла к решению физических задач»

Презентация к уроку

Цель урока:

  • обобщить и закрепить ключевые задачи по теме;
  • научиться работать с теоретическими вопросами темы;
  • научиться применять интеграл к решению физических задач.

План урока:

1. Схема решения задач на приложения определенного интеграла
2. Нахождение пути, пройденного телом при прямолинейном движении
3. Вычисление работы силы, произведенной при прямолинейном движении тела
4. Вычисление работы, затраченной на растяжение или сжатие пружины
5. Определение силы давления жидкости на вертикально расположенную пластинку

Тип урока: интегрированный.

Воспитательная работа: расширение кругозора и познавательной деятельности учащихся, развитие логического мышления и умения применять свои знания.

Техническое обеспечение: интерактивная доска. Компьютер и диск.

Приложение: «Рапсодия природы».

I. Организационный момент

II. Постановка цели урока

– Урок хотелось бы провести под девизом Готфрида Вильгельма Лейбница – немецкого философа, логика, математика, физика: «Общее искусство знаков представляет чудесное пособие, так как оно разгружает воображение… Следует заботиться о том, чтобы обозначения были удобны для открытий. Обозначения коротко выражают и отображают сущность вещей. Тогда поразительным образом сокращается работа мысли».

III. Повторим основные понятия и ответим на вопросы:

– Скажите основное определение интеграла?
– Что вы знаете о интеграле (свойства, теоремы)?
– Знаете ли вы какие-нибудь примеры задач с применением интеграла?

IV. Объяснение нового материала (рассмотрение теории):

1. Схема решения задач на приложения определенного интеграла

С помощью определенного интеграла можно решать различные задачи физики, механики и т. д., которые трудно или невозможно решить методами элементарной математики.

Так, понятие определенного интеграла применяется при решении задач на вычисление работы переменной силы, давления жидкости на вертикальную поверхность, пути, пройденного телом, имеющим переменную скорость, и ряд других.

Несмотря на разнообразие этих задач, они объединяются одной и той же схемой рассуждений при их решении. Искомая величина (путь, работа, давление и т. д.) соответствует некоторому промежутку изменения переменной величины, которая является переменной интегрирования. Эту переменную величину обозначают через Х, а промежуток ее изменения – через [а, b].

Отрезок [a, b] разбивают на n равных частей, в каждой из которых можно пренебречь изменением переменной величины. Этого можно добиться при увеличении числа разбиений отрезка. На каждой такой части задачу решают по формулам для постоянных величин.

Далее составляют сумму (интегральную сумму), выражающую приближенное значение искомой величины. Переходя к пределу при , находят искомую величину I в виде интеграла

I = , где f(x) – данная по условиям задачи функция (сила, скорость и т. д.).

2. Нахождение пути, пройденного телом при прямолинейном движении

Как известно, путь, пройденный телом при равномерном движении за время t, вычисляется по формуле S = vt.

Если тело движется неравномерно в одном направлении и скорость его меняется в зависимости от времени t, т. е. v = f(t), то для нахождения пути, пройденного телом за время от до , разделим этот промежуток времени на n равных частей Δt. В каждой из таких частей скорость можно считать постоянной и равной значению скорости в конце этого промежутка. Тогда пройденный телом путь будет приблизительно равен сумме , т.е.


Если функция v(t) непрерывна, то

Итак,

3. Вычисление работы силы, произведенной при прямолинейном движении тела

Пусть тело под действием силы F движется по прямой s, а направление силы совпадает с направлением движения. Необходимо найти работу, произведенную силой F при перемещении тела из положения a в положение b.

Если сила F постоянна, то работа находится по формуле (произведение силы на длину пути).

Пусть на тело, движущееся по прямой Ох, действует сила F, которая изменяется в зависимости от пройденного пути, т. е. . Для того чтобы найти работу, совершаемую силой F на отрезке пути от а до b, разделим этот отрезок на n равных частей . Предположим, что на каждой части сила сохраняет постоянное значение

Составим интегральную сумму, которая приближенно равна значению произведенной работы:

т.е. работа, совершенная этой силой на участке от а до b, приближенно мала сумме:

Итак, работа переменной силы вычисляется по формуле:

4. Вычисление работы, затраченной на растяжение или сжатие пружины

Согласно закону Гука, сила F, необходимая для растяжения или сжатия пружины, пропорциональна величине растяжения или сжатия.

Пусть х – величина растяжения или сжатия пружины. Тогда , где k – коэффициент пропорциональности, зависящий от свойства пружины.

Работа на участке выразится формулой , а вся затраченная работа или . Если то погрешность величины работы стремится к нулю.

Для нахождения истинной величины работы следует перейти к пределу

5. Определение силы давления жидкости на вертикально расположенную пластинку

Из физики известно, что сила Р давления жидкости на горизонтально расположенную площадку S, глубина погружения которой равна h, определяется по формуле:

, где – плотность жидкости.

Выведем формулу для вычисления силы давления жидкости на вертикально расположенную пластинку произвольной формы, если ее верхний край погружен на глубину a, а нижний – на глубину b.

Так как различные части вертикальной пластинки находятся на разной глубине, то сила давления жидкости на них неодинаковa. Для вывода формулы нужно разделить пластинку на горизонтальных полос одинаковой высоты . Каждую полосу приближенно можно считать прямоугольником (рис.199).

По закону Паскаля сила давления жидкости на такую полосу равна силе движения жидкости на горизонтально расположенную пластинку той же площади, погруженной на ту же глубину.

Тогда согласно формуле (4) сила давления на полосу, находящуюся на расстоянии х от поверхности, составит , где – площадь полосы.

Составим интегральную сумму и найдем ее предел, равный силе давления жидкости на всю пластинку:

Если верхний край пластинки совпадает с поверхностью жидкости, то а=0 и формула (5) примет вид

Ширина каждой полосы зависит от формы пластинки и является функцией глубины х погружения данной полосы.

Для пластинки постоянной ширины формула (5) упрощается, т.к. эту постоянную можно вынести за знак интеграла:

V. Разбор задач по теме

1) Скорость движения материальной точки задается формулой = (4 м/с. Найти путь, пройденный точкой за первые 4с от начала движения.

2) Скорость движения изменяется по закону м/с . Найти длину пути, пройденного телом за 3-ю секунду его движения.

3) Скорость движения тела задана уравнением м/с. Определить путь, пройденный телом от начала движения до остановки.

Скорость движение тела равна нулю в момент начала его движения и остановки. Найдем момент остановки тела, для чего приравняем скорость нулю и решим уравнение относительно t; получим

4) Тело брошено вертикально вверх со скоростью, которая изменяется по закону м/с. Найти наибольшую высоту подъема.

Найдем время, в течении которого тело поднималось вверх: 29,4–9,8t=0 (в момент наибольшего подъема скорость равна нулю); t = 3 с. Поэтому

5) Какую работу совершает сила в 10Н при растяжении пружины на 2 см?

По закону Гука сила F, растягивающая пружину, пропорциональна растяжению пружины , т.е. F = kx. Используя условие, находим (Н/м), т.е. F = 500x. Получаем

6) Сила в 60Н растягивает пружину на 2 см. Первоначальная длина пружины равна 14 см. Какую работу нужно совершить, чтобы растянуть ее до 20 см?

Имеем (H/м) и, следовательно, F=3000x. Так как пружину требуется растянуть на 0,06 (м), то

7) Определить силу давления воды на стенку шлюза, длина которого 20 м, а высота 5 м (считая шлюз доверху заполненным водой).

Здесь y = f(x) = 20, a = 0, b = 5 м, кг/.

8) В воду опущена прямоугольная пластинка, расположенная вертикально. Ее горизонтальная сторона равна 1 м, вертикальная 2 м. Верхняя сторона находится на глубине 0,5 м. Определить силу давления воды на пластинку.

Здесь y = 1, a = 0,5, b = 2 + 0,5 = 2,5 (м), = 1000 кг/. Следовательно,

9) Скорость прямолинейного движения точки задана уравнением . Найти уравнение движения точки.

Известно, что скорость прямолинейного движения тела равна производной пути s по времени t, т.е. , откуда ds = v dt. Тогда имеем

Это искомое уравнение.

10) Скорость тела задана уравнением . Найти уравнение движения, если за время тело прошло путь .

Имеем ds = v dt = (6+ 1) dt; тогда

Подставив в найденное уравнение начальные условия s = 60 м, t = 3 c, получим

откуда С = 3.

Искомое уравнение примет вид

11) Тело движется со скоростью м/с. Найти закон движения s(t), если в начальный момент тело находилось на расстоянии 5 см от начала отсчета.

Так как ds = v dt = (, то

Из условия следует, что если t = 0, то s = 5 см = 0,05 м. подставив эти данные в полученное уравнение, имеем откуда 0,05 = С.

Тогда искомое уравнение примет вид

12) Вычислить силу давления воды на плотину, имеющую форму трапеции, у которой верхнее основание, совпадающее с поверхностью воды, имеет длину 10 м, нижнее основание 20 м, а высота 3 м.

13) Цилиндрический стакан наполнен ртутью. Вычислить силу давления ртути на боковую поверхность стакана, если его высота 0,1 м, а радиус основания 0,04 м. Плотность ртути равна 13600 кг/.

Вычислим площадь круглой полоски

Элементарная сила давления составляет

VI. Самостоятельное решение задач на доске, коллективный разбор решений задач:

  1. Скорость движения тела задана уравнением . Найти уравнение движения, если в начальный момент времени
  2. Найти уравнение движения точки, если к моменту начала отсчета она прошла путь , а его скорость задана уравнением
  3. Скорость движения тела пропорциональна квадрату времени. Найти уравнение движения тела, если известно, что за 3 с оно прошло 18 м.
  4. Тело движется прямолинейно со скоростью м/с. Найти путь, пройденный телом за 5 с от начала движения.
  5. Скорость движения тела изменяется по закону м/с. Найти путь, пройденный телом за 4 с от начала движения.
  6. Найти путь пройденный телом за 10-ю секунду, зная, что что скорость его прямолинейного движения выражается формулой м/с.
  7. Найти путь, пройденный точкой от начала движения до ее остановки, если скорость ее прямолинейного движения изменяется по закону м/с.
  8. Какую работу совершает сила в 8 Н при растяжении пружины на 6 см?
  9. Сила в 40 Н растягивает пружину на 0,04 м. Какую работу надо совершить, чтобы растянуть пружину на 0,02 м?
  10. Вычислить силу давления воды на вертикальную прямоугольную пластинку, основание которой 30 м, а высота 10 м, причем верхний конец пластинки совпадает с уровнем воды.
  11. Вычислить силу давления воды на одну из стенок аквариума, имеющего длину 30 см и высоту 20 см.

VII. Минутка релаксации

VIII. Подведение итогов урока:

– Каким вопросам был посвящен урок?
– Чему научились на уроке?
– Какие теоретические факты обобщались на уроке?
– Какие рассмотренные задачи оказались наиболее сложными? Почему?

Список литературы:

  1. Журнал «Потенциал»
  2. «Алгебра и начала анализа» 11 класс С.М. Никольский, М.К. Потапов и др.
  3. «Алгебра и математический анализ» Н.Я. Виленкин и др.
  4. «Учебник по математическому анализу» Град О.Г., Змеев О.А.
  5. «Высшая математика: Учебник для вузов». В 3 томах. Бугров Я.С. Никольский С.М.
  6. «Математический анализ». Е.Б. Боронина

Перемещение и путь при равноускоренном прямолинейном движении

теория по физике 🧲 кинематика

Геометрический смысл перемещения заключается в том, что перемещение есть площадь фигуры, заключенной между графиком скорости, осью времени и прямыми, проведенными перпендикулярно к оси времени через точки, соответствующие времени начала и конца движения.

При равноускоренном прямолинейном движении перемещение определяется площадью трапеции, основаниями которой служат проекции начальной и конечной скорости тела, а ее боковыми сторонами — ось времени и график скорости соответственно. Поэтому перемещение (путь) можно вычислить по формуле:

Пример №1. По графику определить перемещение тела в момент времени t=3 с.

Перемещение есть площадь фигуры, ограниченной графиком скорости, осью времени и перпендикулярами, проведенными к ней. Поэтому в нашем случае:

Извлекаем из графика необходимые данные:

  • Фигура 1. Начальная скорость — 3 м/с. Конечная — 0 м/с. Время — 1,5 с.
  • Фигура 2. Начальная скорость — 0 м/с. Конечная — –3 м/с. Время — 1,5 с (3 с – 1,5 с).

Подставляем известные данные в формулу:

Перемещение равно 0, так как тело сначала проделало некоторый путь, а затем вернулось в исходное положение.

Варианты записи формулы перемещения

Конечная скорость движения тела часто неизвестна. Поэтому при решении задач вместо нее обычно подставляют эту формулу:

В итоге получается формула:

Если движение равнозамедленное, в формуле используется знак «–». Если движение равноускоренное, оставляется знак «+».

Если начальная скорость равна 0 (v0 = 0), эта формула принимает

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Если неизвестно время движения, но известно ускорение, начальная и конечная скорости, то перемещение можно вычислить по формуле:

Пример №2. Найти тормозной путь автомобиля, который начал тормозить при скорости 72 км/ч. Торможение до полной остановки заняло 3 секунды. Модуль ускорения при этом составил 2 м/с.

Перемещение при разгоне и торможении тела

Все перечисленные выше формулы работают, если направление вектора ускорения и вектора скорости совпадают ( а ↑↑ v ). Если векторы имеют противоположное направление ( а ↑↓ v ), движение следует описывать в два этапа:

Этап торможения

Время торможения равно разности полного времени движения и времени второго этапа:

Когда тело тормозит, через некоторое время t1оно останавливается. Поэтому скорость в момент времени t1 равна 0:

При торможении перемещение s1 равно:

Этап разгона

Время разгона равно разности полного времени движения и времени первого этапа:

Тело начинает разгоняться сразу после преодоления нулевого значения скорости, которую можно считать начальной. Поэтому скорость в момент времени t2 равна:

При разгоне перемещение s2 равно:

При этом модуль перемещения в течение всего времени движения равен:

Полный путь (обозначим его l), пройденный телом за оба этапа, равен:

Пример №3. Мальчик пробежал из состояния покоя некоторое расстояние за 5 секунд с ускорением 1 м/с 2 . Затем он тормозил до полной остановки в течение 2 секунд с другим по модулю ускорением. Найти этот модуль ускорения, если его тормозной путь составил 3 метра.

В данном случае движение нужно разделить на два этапа, так как мальчик сначала разогнался, потом затормозил. Тормозной путь будет соответствовать второму этапу. Через него мы выразим ускорение:

Из первого этапа (разгона) можно выразить конечную скорость, которая послужит для второго этапа начальной скоростью:

Подставляем выраженные величины в формулу:

Перемещение в n-ную секунду прямолинейного равноускоренного движения

Иногда в механике встречаются задачи, когда нужно найти перемещение тела за определенный промежуток времени при условии, что тело начинало движение из состояния покоя. В таком случае перемещение определяется формулой:

За первую секунду тело переместится на расстояние, равное:

За вторую секунду тело переместится на расстояние, равное разности перемещения за 2 секунды и перемещения за 1 секунду:

За третью секунду тело переместится на расстояние, равное разности перемещения за 3 секунды и перемещения за 2 секунды:

Видно, что за каждую секунду тело проходит перемещение, кратное целому нечетному числу:

Из формул перемещений за 1, 2 и 3 секунду можно выявить закономерность: перемещение за n-ную секунду равно половине произведения модуля ускорения на (2n–1), где n — секунда, за которую мы ищем перемещение тела. Математически это записывается так:

Формула перемещения за n-ную секунду

Пример №4. Автомобиль разгоняется с ускорением 3 м/с 2. Найти его перемещение за 6 секунду.

Подставляем известные данные в формулу и получаем:

Таким же способом можно найти перемещение не за 1 секунду, а за некоторый промежуток времени: за 2, 3, 4 секунды и т. д. В этом случае используется формула:

где t — время одного промежутка, а n — порядковый номер этого промежутка.

Пример №5. Ягуар ринулся за добычей с ускорением 2,5 м/с 2 . Найти его перемещение за промежуток времени от 4 до 6 секунд включительно.

Время от 4 до 6 секунд включительно — это 3 секунды: 4-ая, 5-ая и 6-ая. Значит, промежуток времени составляет 3 секунды. До наступления этого промежутка успело пройти еще 3 секунды. Значит, время от 4 до 6 секунд — это второй по счету временной промежуток.

Подставляем известные данные в формулу:

Проекция и график перемещения

Проекция перемещения на ось ОХ. График перемещения — это график зависимости перемещения от времени. Графиком перемещения при равноускоренном движении является ветка параболы. График перемещения при равноускоренном движении, когда вектор скорости направлен в сторону оси ОХ ( v ↑↑OX), а вектора скорости и ускорения сонаправлены ( v ↑↑ a ), принимает следующий вид:

График перемещения при равнозамедленном движении, когда вектор скорости направлен в сторону оси ОХ (v↑↑OX), а вектора скорости и ускорения противоположно ( v ↓↑ a ), принимает следующий вид:

Определение направления знака проекции ускорения по графику его перемещения:

  • Если ветви параболического графика смотрят вниз, проекция ускорения тела отрицательна.
  • Если ветви параболического графика смотрят вверх, проекция ускорения тела положительна.

Пример №6. Определить ускорение тела по графику его перемещения.

Перемещение тела в момент времени t=0 с соответствует нулю. Значит, ускорение можно выразить из формулы перемещения без начального ускорения. Получим:

Теперь возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 с. Этой точке соответствует перемещение 30 м. Подставляем известные данные в формулу и получаем:

График пути

График пути от времени в случае равноускоренного движения совпадает с графиком проекции перемещения, так как s = l.

В случае с равнозамедленным движением график пути представляет собой линию, поделенную на 2 части:

  • 1 часть — до момента, когда скорость тела принимает нулевое значение (v = 0). Эта часть графика является частью параболы от начала координат до ее вершины.
  • 2 часть — после момента, при котором скорость тела принимает нулевое значение (v = 0). Эта часть является ветвью такой же, но перевернутой параболы. Ее вершина совпадает с вершиной предыдущей параболы, но ее ветвь направлена вверх.

Такой вид графика (возрастающий) объясняется тем, что путь не может уменьшаться — он либо не меняется (в состоянии покоя), либо растет независимо от того, в каком направлении, с какой скоростью и с каким ускорением движется тело.

Пример №7. По графику пути от времени, соответствующему равноускоренному прямолинейному движению, определить ускорение тела.

При равноускоренном прямолинейном движении графиком пути является ветвь параболы. Поэтому наш график — красный. График пути при равноускоренном прямолинейном движении также совпадает с графиком проекции его ускорения. Поэтому для вычисления ускорения мы можем использовать эту формулу:

Для расчета возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 c. Ей соответствует путь, равный 5 м. Значит, перемещение тоже равно 5 м. Подставляем известные данные в формулу:

Тело массой 200 г движется вдоль оси Ох, при этом его координата изменяется во времени в соответствии с формулой х(t) = 10 + 5t – «>– 3t 2 (все величины выражены в СИ).

Установите соответствие между физическими величинами и формулами, выражающими их зависимости от времени в условиях данной задачи.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Алгоритм решения

Решение

Из условия задачи известна только масса тела: m = 200 г = 0,2 кг.

Так как тело движется вдоль оси Ox, уравнение движения тела при прямолинейном равноускоренном движении имеет вид:

x ( t ) = x 0 + v 0 t + a t 2 2 . .

Теперь мы можем выделить кинематические характеристики движения тела:

Перемещение тела определяется формулой:

s = v 0 t + a t 2 2 . .

Начальная координата не учитывается, так как это расстояние было уже пройдено до начала отсчета времени. Поэтому перемещение равно:

x ( t ) = v 0 t + a t 2 2 . . = 5 t − 3 t 2

Кинетическая энергия тела определяется формулой:

Скорость при прямолинейном равноускоренном движении равна:

v = v 0 + a t = 5 − 6 t

Поэтому кинетическая энергия тела равна:

E k = m ( 5 − 6 t ) 2 2 . . = 0 , 2 2 . . ( 5 − 6 t ) 2 = 0 , 1 ( 5 − 6 t ) 2

Следовательно, правильная последовательность цифр в ответе будет: 34.

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.

Алгоритм решения

  1. Определить, какому типу движения соответствует график зависимости координаты тела от времени.
  2. Определить величины, которые характеризуют такое движение.
  3. Определить характер изменения величин, характеризующих это движение.
  4. Установить соответствие между графиками А и Б и величинами, характеризующими движение.

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

pазбирался: Алиса Никитина | обсудить разбор | оценить

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

  1. Охарактеризовать движение тела на различных участках графика.
  2. Выделить участки движения, над которыми нужно работать по условию задачи.
  3. Записать исходные данные.
  4. Записать формулу определения искомой величины.
  5. Произвести вычисления.

Решение

Весь график можно поделить на 3 участка:

  1. От t1 = 0 c до t2 = 10 с. В это время тело двигалось равноускоренно (с положительным ускорением).
  2. От t1 = 10 c до t2 = 30 с. В это время тело двигалось равномерно (с нулевым ускорением).
  3. От t1 = 30 c до t2 = 50 с. В это время тело двигалось равнозамедленно (с отрицательным ускорением).

По условию задачи нужно найти путь, пройденный автомобилем в интервале времени от t1 = 20 c до t2 = 50 с. Этому времени соответствуют два участка:

  1. От t1 = 20 c до t2 = 30 с — с равномерным движением.
  2. От t1 = 30 c до t2 = 50 с — с равнозамедленным движением.
  • Для первого участка. Начальный момент времени t1 = 20 c. Конечный момент времени t2 = 30 с. Скорость (определяем по графику) — 10 м/с.
  • Для второго участка. Начальный момент времени t1 = 30 c. Конечный момент времени t2 = 50 с. Скорость определяем по графику. Начальная скорость — 10 м/с, конечная — 0 м/с.

Записываем формулу искомой величины:

s1 — путь тела, пройденный на первом участке, s2 — путь тела, пройденный на втором участке.

s1и s2 можно выразить через формулы пути для равномерного и равноускоренного движения соответственно:

Теперь рассчитаем пути s1и s2, а затем сложим их:

pазбирался: Алиса Никитина | обсудить разбор | оценить


источники:

http://urok.1sept.ru/articles/649134

http://spadilo.ru/peremeshhenie-i-put-pri-ravnouskorennom-pryamolinejnom-dvizhenii/