Скорость тела задается уравнением вида

Уравнение движения тела. Все виды уравнений движения

Понятие «движение» определить не так уж просто, как это может показаться. С житейской точки зрения, это состояние является полной противоположностью покоя, но современная физика считает, что это не совсем так. В философии под движением подразумеваются любые изменения, происходящие с материей. Аристотель полагал, что данное явление равносильно самой жизни. А для математика любое перемещение тела выражается уравнением движения, записанным при помощи переменных и цифр.

Материальная точка

В физике перемещение различных тел в пространстве изучает раздел механики, именуемый кинематикой. Если размеры некоего объекта слишком малы в сравнении с расстоянием, которое ему приходится преодолевать вследствие его движения, то он рассматривается здесь как материальная точка. Примером тому может служить автомобиль, едущий по дороге из одного города в другой, птица, летящая в небе, а также многое другое. Подобная упрощенная модель удобна при написании уравнения движения точки, за которую принимается определённое тело.

Бывают и другие ситуации. Представим, что тот же автомобиль хозяин решил переместить с одного конца гаража в другой. Здесь изменение местоположения сравнимо с размерами объекта. Поэтому каждая из точек автомобиля будет иметь разные координаты, а сам он рассматривается как объёмное тело в пространстве.

Основные понятия

Следует учитывать, что для физика путь, пройденный определённым объектом, и перемещение – совсем не одно и то же, а эти слова не являются синонимами. Уяснить разницу между данными понятиями можно, рассмотрев движение самолёта в небе.

След, который он оставляет, наглядно показывает его траекторию, то есть линию. При этом путь представляет собой её длину и выражается в определённых единицах (к примеру, в метрах). А перемещение – это вектор, соединяющий лишь точки начала и конца движения.

Подобное можно увидеть на рисунке, приведённом ниже, который демонстрирует маршрут машины, едущей по извилистой дороге, и вертолёта, летящего по прямой. Векторы перемещения для этих объектов будут одинаковые, а пути и траектории – разными.

Равномерное движение по прямой

Теперь рассмотрим различные виды уравнений движения. И начнём с самого простого случая, когда некий объект перемещается по прямой с одинаковой скоростью. Это значит, что по истечении равных промежутков времени путь, который он проходит за данный период, не меняется по величине.

Что нам потребуется для описания данного движения тела, вернее, материальной точки, как уже было условлено его называть? Важно выбрать систему координат. Для простоты предположим, что перемещение происходит вдоль некоей оси 0Х.

Тогда уравнение движения: x = х0 + vхt. Оно и будет описывать процесс в общем виде.

Важным понятием при изменении местоположения тела является скорость. В физике она является векторной величиной, поэтому принимает положительное и отрицательное значение. Здесь всё зависит от направления, ведь тело может перемещаться по выбранной оси с возрастающей координатой и в противоположную сторону.

Относительность движения

Почему так важно выбрать систему координат, а также точку отсчёта для описания указанного процесса? Просто потому, что законы мироздания таковы, что без всего этого уравнение движения не будет иметь смысла. Это показано такими великими учёными, как Галилей, Ньютон и Эйнштейн. С начала жизни, находясь на Земле и интуитивно привыкнув выбирать её за систему отсчёта, человек ошибочно полагает, что существует покой, хотя для природы не бывает такого состояния. Тело может менять местоположение или оставаться статичным лишь относительно какого-либо объекта.

Мало того, тело может двигаться и находиться в покое одновременно. Примером тому может послужить чемодан пассажира поезда, который лежит на верхней полке купе. Он движется относительно деревни, мимо которой проезжает состав, и покоится по мнению своего хозяина, расположившегося на нижнем сидении у окна. Космическое тело, некогда получив начальную скорость, способно лететь в пространстве миллионы лет, пока не столкнётся с другим объектом. Движение его не будет прекращаться потому, что перемещается оно лишь относительно прочих тел, а в системе отсчёта, связанной с ним, космический путешественник находится в покое.

Пример составления уравнений

Итак, выберем за точку отсчёта некий пункт А, при этом координатной осью пусть будет для нас автомагистраль, находящаяся рядом. А направление её будет проходить с запада на восток. Предположим, что в эту же сторону в пункт В, расположенный за 300 км, пешком отправился путешественник со скоростью 4 км/ч.

Получается, что уравнение движения задаётся в виде: х = 4t, где t – время в пути. Согласно этой формуле, появляется возможность вычислить местонахождение пешехода в любой необходимый момент. Становится понятно, что через час он пройдёт 4 км, через два – 8 и достигнет пункта Б спустя 75 часов, так как его координата х = 300 окажется при t = 75.

Если скорость отрицательна

Предположим теперь, что из В в А едет автомобиль, имея скорость 80 км/час. Здесь уравнение движения имеет вид: х = 300 – 80t. Это действительно так, ведь х0 = 300, а v = -80. Следует обратить внимание, что скорость в данном случае указывается со знаком «минус», потому что объект перемещается в отрицательном направлении оси 0Х. Через какое время автомобиль достигнет пункта назначения? Это произойдёт, когда координата примет нулевое значение, то есть при х = 0.

Остаётся решить уравнение 0 = 300 – 80t. Получаем, что t = 3,75. Это означает, что автомобиль достигнет пункта В через 3 часа 45 минут.

Необходимо помнить, что координата тоже может быть отрицательной. В нашем случае это оказалось бы, если б существовал некий пункт С, находящийся в западном направлении от А.

Движение с увеличением скорости

Перемещаться объект может не только с постоянной скоростью, но и менять её с течением времени. Движение тела может происходить по очень сложным законам. Но для простоты следует рассмотреть случай, когда ускорение увеличивается на определённое постоянное значение, а объект перемещается по прямой. В данном случае говорят, что это равноускоренное движение. Формулы, описывающие этот процесс, приведены ниже.

А теперь рассмотрим конкретные задачи. Допустим, что девочка, сев на санки на вершине горы, которую мы выберем за начало воображаемой системы координат с направлением оси по наклону вниз, начинает двигаться под действием силы тяжести с ускорением, равным 0,1 м/с 2 .

Тогда уравнение движения тела имеет вид: sx = 0,05t 2 .

Понимая это, можно узнать расстояние, которое девочка проедет на санках, для любого из моментов перемещения. Через 10 секунд это будет 5 м, а через 20 секунд после начала движения под гору путь составит 20 м.

Как выразить скорость на языке формул? Поскольку v0x = 0 (ведь санки начали катиться с горы без начальной скорости только под действием силы притяжения), то запись не будет слишком сложной.

Уравнение скорости движения примет вид: vx= 0,1t. Из него мы сможет узнать, как изменяется этот параметр с течением времени.

К примеру, через десять секунд vx= 1 м/с 2 , а через 20 с примет значение 2 м/с 2 .

Если ускорение отрицательно

Существует и другой вид перемещения, относящийся к тому же типу. Это движение называют равнозамедленным. В данном случае скорость тела тоже изменяется, но с течение времени не увеличивается, а уменьшается, и тоже на постоянную величину. Снова приведём конкретный пример. Поезд, ехавший до этого с постоянной скоростью 20 м/с, начал тормозить. При этом ускорение его составило 0,4 м/с 2 . Для решения примем за начало отсчёта точку пути поезда, где он начал тормозить, а координатную ось направим по линии его перемещения.

Тогда становится понятно, что движение задано уравнением: sx = 20t — 0,2t 2 .

А скорость описывается выражением: vx = 20 – 0,4t. Необходимо заметить, что перед ускорением ставится знак «минус», так как поезд тормозит, и данная величина отрицательна. Из полученных уравнений возможно заключить, что состав остановится через 50 секунд, проехав при этом 500 м.

Сложное движение

Для решения задач в физике обычно создаются упрощённые математические модели реальных ситуаций. Но многогранный мир и явления, происходящие в нём, далеко не всегда вписываются в подобные рамки. Как составить уравнение движения в сложных случаях? Проблема решаема, ведь любой запутанный процесс возможно описать поэтапно. Для пояснения снова приведём пример. Вообразим, что при запуске фейерверков одна из ракет, взлетевшая с земли с начальной скоростью 30 м/с, достигнув верхней точки своего полёта, разорвалась на две части. При этом соотношение масс получившихся осколков составило 2:1. Далее обе части ракеты продолжили двигаться отдельно одна от другой таким образом, что первая полетела вертикально вверх со скоростью 20 м/с, а вторая сразу упала вниз. Следует узнать: какова была скорость второй части в момент, когда она достигла земли?

Первым этапом данного процесса окажется полёт ракеты вертикально вверх с начальной скоростью. Перемещение будет равнозамедленным. При описании понятно, что уравнение движения тела имеет вид: sx = 30t – 5t 2 . Здесь мы полагаем, что ускорение свободного падения для удобства округляется до значения 10 м/с 2 . Скорость при этом будет описываться следующим выражением: v = 30 – 10t. По этим данным уже возможно вычислить, что высота подъёма составит 45 м.

Вторым этапом движения (в данном случае уже второго осколка) окажется свободное падение этого тела с начальной скоростью, получаемой в момент распадения ракеты на части. При этом процесс будет равноускоренным. Для нахождения окончательного ответа сначала вычисляет v0 из закона сохранения импульса. Массы тел относятся 2:1, а скорости находятся в обратной зависимости. Следовательно, второй осколок полетит вниз с v0 = 10 м/c, а уравнение скорости примет вид: v = 10 + 10t.

Время падения мы узнаем из уравнения движения sx = 10t + 5t 2 . Подставим уже полученное значение высоты подъёма. В результате выходит, что скорость второго осколка приблизительно равна 31,6 м/с 2 .

Таким образом, разделяя сложное движение на простые составные части, можно решать любые запутанные задачи и составлять уравнения движения всех видов.

Контрольная работа по физике 1

Примеры решения задач по классической и релятивистской механике

1. В течение времени τ скорость тела задается уравнением вида A+Bt+Ct²
(0 ≤ t ≤ τ). Определить среднюю скорость за промежуток времени τ.

Средняя скорость тела за время τ:

Ответ: = A+Bτ/2+Cτ 2 /3.

2. Мяч, брошенный со скоростью 10 м/с под углом 45 0 к горизонту, ударяется о стенку, находящуюся на расстоянии 3 м от места бросания. Когда происходит удар мяча о стенку (при подъеме мяча или при его опускании)? На какой высоте мяч ударится о стенку (считая от высоты, с которой брошен мяч)? Найти скорость мяча в момент удара.

Горизонтальная составляющая скорости не изменяется со временем и равна

С такой скоростью мяч пройдет путь l за время t1:

По вертикали мяч начинает движение со скоростью

и движется равноускоренно. Вертикальная составляющая скорости изменяется по закону

В момент t1 удара мяча о стену вертикальная составляющая скорости равна

Так как вертикальная составляющая скорости в момент удара мяча о стену положительна, то мяч ударился при подъеме.

В момент удара высота равна

Ответ: удар происходит при подъеме мяча; v1 = 7,65 м/c; h = 2,12 м.

3. В вагоне, движущемся горизонтально с постоянным ускорением 3 м/с 2 , висит на проволоке груз массой 2 кг. Определить силу натяжения проволоки и угол ее отклонения от вертикали, если груз неподвижен относительно вагона.

На основании II закона Ньютона запишем

или в проекции на оси координат

Ответ: 1) Т = 20,51 Н; 2) φ = 17°.

4. На железнодорожной платформе, движущейся по инерции со скоростью 3 км/ч, укреплено орудие. Масса платформы с орудием 10 т. Ствол орудия направлен в сторону движения платформы. Снаряд массой 10 кг вылетает из ствола под углом 60 0 к горизонту. Определить скорость снаряда, если после выстрела скорость платформы уменьшилась в 2 раза.

v0 = 3 км/ч = 0,833 м/с

М = 10 т = 10 4 кг

Вдоль оси x во время взаимодействия снаряда с платформой на систему не действуют внешние силы в горизонтальном направлении. Поэтому можно применить закон сохранения импульса для проекций импульсов системы на ось x.

Запишем закон сохранения момента импульса в проекции на ось x:

Ответ: v = 835 м/с.

5. Ветер действует на парус площадью S с силой F=ASρ(υ0 -υ) 2 /2, где А – некоторая постоянная; ρ – плотность воздуха; υ0 – скорость ветра, равная 15 м/с; υ − скорость лодки. Определить скорость лодки при максимальной мгновенной мощности ветра.

Мощность ветра ― это мощность, передаваемая ветром катеру:

где F ― сила ветра, действующая на парус;

v ― скорость лодки.

S ― площадь паруса;

ρ ― плотность воздуха;

v0 ― скорость ветра.

Найдем экстремум функции N(v):

Решаем квадратное уравнение относительно v:

При v = v0 мощность N = 0.

При v = v0/3 = 5 м/с мощность

Ответ: v = v0/3 = 5 м/с. N=250 ASp.

6. Полый тонкостенный цилиндр массой 0,5 кг, катящийся без скольжения, ударяется о стену и откатывается от нее. Скорость цилиндра до удара о стену равнялась 1,4 м/с, после удара 1 м/с. Определить количество теплоты, выделившееся при ударе.

В момент удара шара о стенку часть кинетической энергии шара перейдет в тепло Q. На основании закона сохранения энергии запишем

где ω1 = v1/R, ω2 = v2/R — угловые скорости шара до и после удара, J = mR 2 — момент инерции шара.

откуда найдем количество тепла

Ответ: Q = 0,48 Дж.

7. Период обращения кометы Галлея вокруг Солнца 76 лет. Минимальное расстояние, на котором она проходит от Солнца, составляет 180 Гм. Определить максимальное расстояние, на которое комета удаляется от Солнца. Радиус орбиты Земли принять равным 150 Гм.

Запишем третий закон Кеплера:

где T0 = 1 год ― период вращения Земли вокруг Солнца;

a ― большая полуось орбиты кометы.

Ответ: a = 5,2∙10 12 м.

8. Собственное время жизни частицы отличается на 1% от времени жизни по неподвижным часам. Определить ее скорость.

Δt ― время жизни частицы по неподвижным часам;

Δt0 ― собственное время жизни частицы.

Релятивистская связь между Δt и Δt0:

Скорость тела задается уравнением вида

В течение времени г скорость тела задается уравнением вида v = А + Bt + Ct 2 (0 ≤ t ≤ τ). Определите среднюю скорость за промежуток времени τ.

Скорость реактивного самолета на некотором участке меняется с расстоянием по закону v = D + Bs. Найти работу за промежуток времени (t1,t2), если масса самолета m. В момент времени t1 скорость равна v1.

Циклическая частота свободных незатухающих колебаний материальной точки ω0. Определить наименьший промежуток времени, за который потенциальная энергия колебаний уменьшается в два раза по сравнению со своим наибольшим значением.

Сила F = 20 Н, действовавшая в течение короткого промежутка времени t = 10 –2 c на покоящееся тело, сообщила ему кинетическую энергию 3 Дж. Какую энергию сообщит эта сила тому же телу за то же время, если начальная скорость тела 10 м/с, а сила действует в направлении скорости?

На материальную точку М действует сила F = 3t 2 i + 4tj. Определить проекцию импульса силы на ось Ох за промежуток времени τ = t2 – t1, где t2 = 2 с, t1 = 0.

Электрон в бетатроне движется по орбите радиусом r = 0,4 м и приобретает за один оборот кинетическую энергию T = 20 эВ. Вычислить скорость изменения магнитной индукции d /dt, считая эту скорость в течение интересующего нас промежутка времени постоянной.

Закон движения материальной точки имеет вид: X(t) = (3–t) 2 . Найти перемещение и пройденный путь за промежуток времени от t1 = 2 c до t2 = 4 c, а также среднюю путевую скорость и среднюю скорость перемещения.

Закон движения материальной точки имеет вид: X(t) = A+Bt+Ct 2 , где A = 25 м, B = 10 м/с, C = 1 м/с 2 . Найти перемещение, пройденный путь, среднюю путевую скорость и среднюю скорость перемещения для промежутка времени от t1 = 2 с до t2 = 6 c.

Маховик начал вращаться равноускоренно и за промежуток времени t = 10 с достиг частоты n = 300 мин –1 . Запишите уравнение зависимости φ = f(t) рад, согласно которому вращается диск.

Два источника ЭДС ε1 = 10 В, ε2 = 8 В с внутренними сопротивлениями r1 = 1,0 Ом и r2 = 2,0 Ом включены параллельно реостату R = 6,0 Ом (рис.3.6). Определите: 1) силу тока в источниках и реостате; 2) работу, совершенную источниками за промежуток времени Δt = 10,0 с.

Определите величины токов во всех участках цепи (рис. 16.15), если ε1 = 24 В, ε2 = 18 В, r1 = 0,2 Ом, r2 = 0,5 Ом, R1 = 20 Ом, R2 = R3 = 2,0 Ом. Чему равна работа, совершенная источниками за промежуток времени Δt = 0,1 с?

Зная постоянную распада λ ядра, определить: а) вероятность того, что оно распадется за промежуток времени от 0 до t; б) его среднее время жизни τ.

На частицу массой m действует сила F = α ехр (–βt), где α и β — положительные постоянные. При t = 0 скорость частицы v = 0. Найти работу силы за очень большой промежуток времени (t → ∞).


источники:

http://studzachet.ru/primeryi-uchebnyix-rabot/fizika/kontrolnaya-rabota-1/

http://reshenie-zadach.com.ua/fizika/1/promezhutok_vremeni.php