Следствие из закона гесса выражается уравнением

Энергетика химических процессов. Закон Гесса

Материалы портала onx.distant.ru

Тепловой эффект процесса

Количество выделенной (или поглощенной) теплоты Q в данном процессе называют тепловым эффектом процесса. Экзотермической является реакция, протекающая с выделением теплоты, а эндотермической – с поглощением теплоты из окружающей среды.

Для лабораторных и промышленных процессов наиболее типичен изобарный режим (Р=const). Поэтому обычно рассматривают тепловой эффект при Р,Т = const, т.е. изменение энтальпии процесса ΔН.

Следует отметить, что абсолютные значения энтальпии Н определить не представляется возможным, так как не известна абсолютная величина внутренней энергии.

Для экзотермической реакции (Q > 0) ΔН 0.

Термохимические уравнения

Химические уравнения, в которых дополнительно указывается величина изменения энтальпии реакции, а также агрегатное состояние веществ и температура, называются термохимическими уравнениями.

В термохимических уравнениях отмечают фазовое состояние и аллотропные модификации реагентов и образующихся веществ: г – газообразное, ж – жидкое, к – кристаллическое; S(ромб), S(монокл), С(графит), С(алмаз) и т.д.

Важно подчеркнуть, что с термохимическими уравнениями можно проводить алгебраические операции сложения, вычитания, деления, умножения.

Закон Гесса

Изменение энтальпии (внутренней энергии) химической реакции зависит от вида, состояния и количества исходных веществ и продуктов реакции, но не зависит от пути процесса.

Следствия из закона Гесса

  1. Изменение энтальпии реакции равно сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ (суммирование проводится с учетом стехиометрических коэффициентов).
  2. Изменение энтальпии реакции равно сумме энтальпий сгорания исходных веществ за вычетом суммы энтальпий сгорания продуктов реакции (суммирование проводится с учетом стехиометрических коэффициентов).

Стандартные термодинамические величины

Стандартные термодинамические величины – это такие величины, которые относятся к процессам, все ингредиенты которых находятся в стандартных состояниях.

Стандартным состоянием вещества, находящегося в конденсированной фазе (кристаллической или жидкой), является реальное состояние вещества, находящегося при данной температуре и давлении 1 атм.

Следует подчеркнуть, что стандартное состояние может иметь место при любой температуре.

Обычно тепловой эффект (изменение энтальпии) реакции приводится для температуры 25 о С (298,15 К) и давления 101,325 кПа (1 атм), т.е. указывается стандартная энтальпия ΔН о 298.

Стандартные энтальпии образования и сгорания

Стандартная энтальпия образования ΔН о f,298 (или ΔН о обр,298) – это изменение энтальпии в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии, причем простые вещества присутствуют в наиболее термодинамически устойчивых состояниях при данной температуре.

Например , ΔН o f,2982О(ж)) = — 285,83 кДж/моль соответствует изменению энтальпии в процессе

при Т = 298,15 К и Р = 1 атм.

Стандартная энтальпия образования простых веществ равна нулю по определению (для наиболее устойчивых их модификаций при данной температуре).

Стандартной энтальпией сгорания ΔН o сгор,298 называют энтальпию сгорания вещества (обычно 1 моль), находящегося в стандартном состоянии с образованием СО2(г), Н2О(ж) и других веществ, состав которых должен быть специально указан. Все продукты сгорания также должны находиться в стандартном состоянии.

Примеры решения задач

Задача 1. Используя справочные термодинамические данные вычислить ΔН o 298 реакции:

Решение. Решим задачу, используя оба следствия из закона Гесса. Ниже для исходных веществ и продуктов реакции приведены значения энтальпий образования и сгорания в кДж/моль (энтальпия сгорания сероводорода до SO2(г) и H2O(ж)):

ВеществоH2S(г)O2(г)SO2(г)H2O(ж)
ΔН o f,298 -20,600-296,90-285,83
ΔН o сгор,298 -562,10000

Cогласно первому следствию закона Гесса энтальпия этой реакции ΔН о х.р. равна:

В соответствии со вторым следствием закона Гесса получаем:

ΔН о х.р.,298 = 2ΔН о сгор,298(H2S(г)) = 2(-562,10) = — 1124,20 кДж.

Задача 2. Вычислите ΔН о 298 реакции N2(г) + 3H2(г) = 2NH3(г), используя следующие данные:

Определите стандартную энтальпию образования NH3(г).

Решение. Поскольку с термохимическими уравнениями можно производить все алгебраические действия, то искомое уравнение получится, если:

      • разделить на два тепловой эффект первого уравнения и изменить его знак на противоположный, т.е:
      • умножить на 3/2 второе уравнение и соответствующую ему величину δН o , изменив ее знак на противоположный:

Таким образом, тепловой эффект реакции N2(г) + 3H2(г) = 2NH3(г) равен:

Δ Н о 298 = (- ΔН о 1/2) + (- 3/2·ΔН о 2) = 765,61 + (- 857,49) = — 91,88 кДж.

Поскольку в рассматриваемой реакции образуется 2 моль NH3(г), то

ΔН о f,298(NH3(г)) = — 91,88/2 = — 45,94 кДж/моль.

Задача 3. Определите энтальпию процесса

если при 298,15 К энтальпия растворения CuSO4(к) в n моль Н2О с образованием раствора CuSO4(р-р, nH2O) равна –40, а энтальпия растворения CuSO4·5H2O(к) с образованием раствора той же концентрации равна +10,5 кДж/моль.

Решение. Составляем цикл Гесса:

ΔН о 1 = ΔН о 2 + ΔН о х (по закону Гесса). Отсюда получаем:

ΔН о х = ΔН о 1 – ΔН о 2 = – 40,0 – 10,5 = -50,5 кДж.

Другой вариант решения.

По закону Гесса: ΔН о 1 = ΔН о х+ ΔН о 3, т.е. при сложении уравнений (2) и (3) получим уравнение (1).

Задача 4. Вычислите энтальпию образования химической связи С= С в молекуле этилена, если его стандартная энтальпия образования равна 52,3 кДж/моль, энтальпия возгонки графита составляет 716,7 кДж/моль, энтальпия атомизации водорода равна +436,0 кДж/моль, энтальпия образования связи С–Н равна –414,0 кДж/моль.

Решение. Составляем цикл Гесса:

ΔН о (С = С) = 52,3 — 2·716,7 — 2·436,0 + 4·414,0 = — 597,1 кДж/моль.

Задачи для самостоятельного решения

1. Составьте уравнение реакции, для которой ΔН о соответствует стандартной энтальпии образования ВaCl2·2H2O(к).

ЗАКОН ГЕССА И ЕГО СЛЕДСТВИЯ: РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ

Закон Гесса (1840 г.) представляет собой частный случай закона сохранения энергии. Он позволяет определить тепловой эффект химического взаимодействия, используя данные о состояниях веществ только в начале и в конце процесса. Для этого применяется так называемая формула закона Гесса, оформленная в виде формулировки следствия из него.

Итак, что же из себя представляет закон, о котором идет речь? Как, пользуясь им, можно проводить вычисления?

Экзотермические и эндотермические реакции

Основной категорией химического процесса, с которой закон Гесса имеет дело, является тепловой эффект – главный объект термохимии.

Тепловым эффектом Q считают теплоту, либо подающуюся в систему, либо выделяющуюся из нее в ходе химического взаимодействия.

Так, если теплота подается в систему (то есть поглощается из внешней среды), то процесс является эндотермическим. Если теплота, наоборот, уходит из системы в окружающую среду, то процесс является экзотермическим.

Каждая реакция отображается с помощью уравнения. Если в уравнении указан тепловой эффект химического процесса, то такое уравнение называется термохимическим. В нем обязательно записываются либо агрегатные состояния веществ, определяющие общее состояние системы, либо их аллотропные модификации (в случае простых веществ).

Обозначения агрегатных состояний записываются нижним индексом в скобках рядом с химической формулой вещества.

Например, для экзотермического процесса:

И для эндотермического процесса:

Состояния:

— (тв.) – твердое, или (к.) – кристаллическое;

Тепловой эффект Q реакции и изменение энтальпии ΔН имеют одинаковые численные значения, а по знаку противоположны:

В связи с этим приведенные выше уравнения можно записать так:

Закон Гесса как основной закон термохимии и примеры расчетов с его использованием

Закон Гесса констатирует:Рассмотрим классический пример.

При экзотермическом взаимодействии углерода (графита) и кислорода образуется углекислый газ. У этого процесса есть два возможных пути: напрямую или через промежуточную стадию, идущую с образованием угарного газа (оксида углерода (II)):

При прямом процессе, идущем непосредственно с образованием углекислого газа, выделяется 393,5 кДж энергии:

Если процесс взаимодействия графита с кислородом идет в две стадии, то каждая из них также сопровождается выделением энергии:

Просуммируем эти два уравнения:

Получаем то же, что и в первом случае (то есть при прямом взаимодействии графита с кислородом): выделяется 393,5 кДж энергии.

Таким образом, результат реакции совершенно не зависит как от пройденного пути, так и от количества промежуточных стадий. Важными оказываются состояния веществ: начальное и конечное.

Прежде, чем рассмотреть примеры расчетов, в которых используется формула закона Гесса, необходимо сделать некоторые уточнения:

1) результаты термохимических расчетов (и измерений) всегда относят к одному молю вещества, которое образуется в ходе реакции;

2) теплота образования – это количество теплоты, выделяющееся при реакции простых веществ с образованием 1 моля продукта;

3) теплоты образования простых веществ принимают за ноль;

4) если прямой процесс является экзотермическим, то обратный будет эндотермическим, и наоборот.

Пример 1.

Запишем термохимические уравнения реакций, о которых идет речь:

Представим уравнение (2) так, чтобы СО стал конечным продуктом реакции, а не исходным веществом. Для этого запишем уравнение в обратном виде. Теплота сгорания по знаку в таком случае станет противоположной:

Для получения ответа на вопрос задачи (по закону Гесса) просуммируем уравнения (1) и (2):

Таким образом, при сгорании углерода с образованием угарного газа выделяется 110,5 кДж энергии.

Пример 2.

В реакции, для которой требуется вычислить теплоту:

  • участвуют 1 молекула этилена и 6 молекул фтора;
  • образуются 2 молекулы тетрафторуглерода и 4 молекулы фтороводорода.

— в первой из данных по условию реакций все коэффициенты и теплоту реакции умножим на 2, чтобы получить 4 молекулы фтороводорода;

— во второй реакции также все коэффициенты и теплоту реакции умножим на 2, чтобы получить 2 молекулы тетрафторуглерода;

— уравнение третьей реакции запишем в обратном виде, чтобы этилен стал исходным веществом, а не продуктом реакции;

— изменим знак теплоты третьей реакции на противоположный, так как ее уравнение записываем в обратном виде.

Просуммируем все уравнения:

Таким образом, теплота реакции этилена с фтором ΔН= -2486,3 кДж.

Следствие из закона Гесса: вычисление энтальпии реакции

Чаще всего в вычислениях применяется не сам закон Гесса, а следствие из него. Оно позволяет вычислить как изменение энтальпии реакции, так и энтальпию образования любого из участников химического взаимодействия.

Следствие утверждает, что

В самом общем виде расчетная формула выглядит так:

А если учесть коэффициенты, то так:

Для вычислений обычно применяют стандартные энтальпии образования, так как именно в стандартных состояниях вещества наиболее устойчивы:

Стандартные теплоты (энтальпии) образования являются табличными величинами.

Задача 1. Используя данные таблицы стандартных термодинамических величин , вычислите изменение энтальпии для реакции:

Решение:

Задача 2.

Решение:

Задача 3. Решение:

Тепловой эффект в термодинамическом уравнении относят к 1 молю образующегося вещества. С учетом этого запишем уравнение реакции следующим образом:

Следовательно, для данной реакции термохимическое уравнение будет выглядеть так:

В дополнение ко всему сказанному отметим, что некоторые тепловые эффекты реакций, идущих при стандартном давлении, меняются с температурой. Однако эти изменения незначительны. Поэтому при выполнении термодинамических вычислений для нестандартных условий можно использовать стандартные величины теплот образования. Появится в итоге небольшая ошибка, что вполне допускается.

Таким образом, закон Гесса, а также следствие из него позволяют проводить расчеты, в основе которых лежат тепловые явления химических процессов.

Далее будут рассмотрены случаи, в которых используется формула закона Гесса для расчета таких термодинамических величин, как энтропия и энергия Гиббса.

Закон Гесса

Закон Гесса представляет собой частный случай закона сохранения энергии:

Тепловой эффект реакции не зависит от промежуточных стадий процесса, а только от начального и конечного состояния веществ

Говоря другими словами, согласно закона Гесса, тепловой эффект реакции не зависит от пути превращения исходных веществ в продукты реакции.

Из закона Гесса вытекает два важных следствия:

  1. Теплота образования вещества (ΔH°обр) равна тепловому эффекту химической реакции образования 1 моля вещества из устойчивых при н.у. простых веществ.
  2. Теплота сгорания вещества (ΔH°сгор), содержащего C, H, N, O, равна тепловому эффекту реакции сгорания 1 моля этого вещества при достаточном кол-ве кислорода с образованием CO2, H2O(ж), N2.

Исходя из первого следствия закона Гесса, тепловой эффект любой реакции может быть рассчитан по теплотам образования вещетсв, участвующих в этой реакции.

Тепловой эффект реакции равен разности суммы теплот образования продуктов реакции и суммы теплот образования исходных продуктов

Для условной реакции вида aA+bB=cC+dD тепловой эффект будет равен:

Таблица теплот образования сложных веществ при н.у.

ВеществоΔH°обр
кДж
ВеществоΔH°обр
кДж
Al2O3(т)-1670CO(г)-110,5
CO2(г)-393,5CH4(г)-74,5
C2H5OH(ж)-277,7CaO(т)-635,5
Ca(OH)2(т)-986,2HCl(г)-92,3
H2O(г)-242H2O(ж)-286
H2O2(ж)-188H2S(г)-20,2
KNO3(т)-492,7NH3(г)46
NO(г)90,4NaCl(т)-411
SO2(г)-297SO3(г)-395
SiO2(т)-880CS2(ж)88

Теплоты образования устойчивых (при н.у.) простых веществ равны нулю.

Исходя из второго следствия закона Гесса, тепловые эффекты некоторых реакций могут быть рассчитаны по теплотам сгорания участвующих в них веществ.

Тепловой эффект реакции равен разности суммы теплот сгорания исходных веществ и суммы теплот сгорания продуктов реакции

Для условной реакции вида aA+bB=cC+dD тепловой эффект может быть рассчитан по формуле:

Теплоты сгорания негорючих веществ равны нулю.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе


источники:

http://himzadacha.ru/zakon-gessa-formula-reshenie-zadach/

http://prosto-o-slognom.ru/chimia/22_4_zakon_Gessa.html