Сложные тригонометрические уравнения из егэ

Сложная тригонометрия в кимах ЕГЭ

1. Решение простейших тригонометрических уравнений
2. Решение тригонометрических уравнений разложением на множители
3. Решение тригонометрических уравнений с помощью замены неизвестного
4. Решение тригонометрических уравнений сводящихся к квадратным уравнениям
5. Решение тригонометрических уравнений преобразованием суммы тригонометрических функций в произведение
6. Решение тригонометрических уравнений преобразованием произведения тригонометрических функций в сумму
7. Решение тригонометрических уравнений с применением формул понижения степени
8. Решение тригонометрических уравнений как однородное
9. Решение тригонометрических уравнений с помощью введения вспомогательного аргумента
10. Решение тригонометрических уравнений с помощью универсальной тригонометрической подстановки
11. Решение тригонометрических уравнений содержащих тригонометрические функции под знаком радикала.

Задания по теме «Тригонометрические уравнения»

Открытый банк заданий по теме тригонометрические уравнения. Задания C1 из ЕГЭ по математике (профильный уровень)

Задание №1179

Условие

а) Решите уравнение 2(\sin x-\cos x)=tgx-1.

б) Укажите корни этого уравнения, принадлежащие промежутку \left[ \frac<3\pi >2;\,3\pi \right].

Решение

а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 \sin x-2 \cos x-tg x=0. Учитывая, что \cos x \neq 0, слагаемое 2 \sin x можно заменить на 2 tg x \cos x, получим уравнение 1+2 tg x \cos x-2 \cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 \cos x)=0.

1) 1-tg x=0, tg x=1, x=\frac\pi 4+\pi n, n \in \mathbb Z;

2) 1-2 \cos x=0, \cos x=\frac12, x=\pm \frac\pi 3+2\pi n, n \in \mathbb Z.

б) С помощью числовой окружности отберём корни, принадлежащие промежутку \left[ \frac<3\pi >2;\, 3\pi \right].

x_1=\frac\pi 4+2\pi =\frac<9\pi >4,

x_2=\frac\pi 3+2\pi =\frac<7\pi >3,

x_3=-\frac\pi 3+2\pi =\frac<5\pi >3.

Ответ

а) \frac\pi 4+\pi n, \pm\frac\pi 3+2\pi n, n \in \mathbb Z;

б) \frac<5\pi >3, \frac<7\pi >3, \frac<9\pi >4.

Задание №1178

Условие

а) Решите уравнение (2\sin ^24x-3\cos 4x)\cdot \sqrt =0.

б) Укажите корни этого уравнения, принадлежащие промежутку \left( 0;\,\frac<3\pi >2\right] ;

Решение

а) ОДЗ: \begin tgx\geqslant 0\\x\neq \frac\pi 2+\pi k,k \in \mathbb Z. \end

Исходное уравнение на ОДЗ равносильно совокупности уравнений

\left[\!\!\begin 2 \sin ^2 4x-3 \cos 4x=0,\\tg x=0. \end\right.

Решим первое уравнение. Для этого сделаем замену \cos 4x=t, t \in [-1; 1]. Тогда \sin^24x=1-t^2. Получим:

t_1=\frac12, t_2=-2, t_2\notin [-1; 1].

4x=\pm \frac\pi 3+2\pi n,

x=\pm \frac\pi <12>+\frac<\pi n>2, n \in \mathbb Z.

Решим второе уравнение.

tg x=0,\, x=\pi k, k \in \mathbb Z.

При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.

Знаком «+» отмечены 1 -я и 3 -я четверти, в которых tg x>0.

Получим: x=\pi k, k \in \mathbb Z; x=\frac\pi <12>+\pi n, n \in \mathbb Z; x=\frac<5\pi ><12>+\pi m, m \in \mathbb Z.

б) Найдём корни, принадлежащие промежутку \left( 0;\,\frac<3\pi >2\right].

Ответ

а) \pi k, k \in \mathbb Z; \frac\pi <12>+\pi n, n \in \mathbb Z; \frac<5\pi ><12>+\pi m, m \in \mathbb Z.

Задание №1177

Условие

а) Решите уравнение: \cos ^2x+\cos ^2\frac\pi 6=\cos ^22x+\sin ^2\frac\pi 3;

б) Укажите все корни, принадлежащие промежутку \left( \frac<7\pi >2;\,\frac<9\pi >2\right].

Решение

а) Так как \sin \frac\pi 3=\cos \frac\pi 6, то \sin ^2\frac\pi 3=\cos ^2\frac\pi 6, значит, заданное уравнение равносильно уравнению \cos^2x=\cos ^22x, которое, в свою очередь, равносильно уравнению \cos^2x-\cos ^2 2x=0.

Но \cos ^2x-\cos ^22x= (\cos x-\cos 2x)\cdot (\cos x+\cos 2x) и

\cos 2x=2 \cos ^2 x-1, поэтому уравнение примет вид

(\cos x-(2 \cos ^2 x-1))\,\cdot (\cos x+(2 \cos ^2 x-1))=0,

(2 \cos ^2 x-\cos x-1)\,\cdot (2 \cos ^2 x+\cos x-1)=0.

Тогда либо 2 \cos ^2 x-\cos x-1=0, либо 2 \cos ^2 x+\cos x-1=0.

Решая первое уравнение как квадратное уравнение относительно \cos x, получаем:

(\cos x)_<1,2>=\frac<1\pm\sqrt 9>4=\frac<1\pm3>4. Поэтому либо \cos x=1, либо \cos x=-\frac12. Если \cos x=1, то x=2k\pi , k \in \mathbb Z. Если \cos x=-\frac12, то x=\pm \frac<2\pi >3+2s\pi , s \in \mathbb Z.

Аналогично, решая второе уравнение, получаем либо \cos x=-1, либо \cos x=\frac12. Если \cos x=-1, то корни x=\pi +2m\pi , m \in \mathbb Z. Если \cos x=\frac12, то x=\pm \frac\pi 3+2n\pi , n \in \mathbb Z.

Объединим полученные решения:

x=m\pi , m \in \mathbb Z; x=\pm \frac\pi 3 +s\pi , s \in \mathbb Z.

б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.

Получим: x_1 =\frac<11\pi >3, x_2=4\pi , x_3 =\frac<13\pi >3.

Ответ

а) m\pi, m \in \mathbb Z; \pm \frac\pi 3 +s\pi , s \in \mathbb Z;

б) \frac<11\pi >3, 4\pi , \frac<13\pi >3.

Задание №1176

Условие

а) Решите уравнение 10\cos ^2\frac x2=\frac<11+5ctg\left( \dfrac<3\pi >2-x\right) ><1+tgx>.

б) Укажите корни этого уравнения, принадлежащие интервалу \left( -2\pi ; -\frac<3\pi >2\right).

Решение

а) 1. Согласно формуле приведения, ctg\left( \frac<3\pi >2-x\right) =tgx. Областью определения уравнения будут такие значения x , что \cos x \neq 0 и tg x \neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 \cos ^2 \frac x2=1+\cos x. Получим уравнение: 5(1+\cos x) =\frac<11+5tgx><1+tgx>.

Заметим, что \frac<11+5tgx><1+tgx>= \frac<5(1+tgx)+6><1+tgx>= 5+\frac<6><1+tgx>, поэтому уравнение принимает вид: 5+5 \cos x=5 +\frac<6><1+tgx>. Отсюда \cos x =\frac<\dfrac65><1+tgx>, \cos x+\sin x =\frac65.

2. Преобразуем \sin x+\cos x по формуле приведения и формуле суммы косинусов: \sin x=\cos \left(\frac\pi 2-x\right), \cos x+\sin x= \cos x+\cos \left(\frac\pi 2-x\right)= 2\cos \frac\pi 4\cos \left(x-\frac\pi 4\right)= \sqrt 2\cos \left( x-\frac\pi 4\right) = \frac65.

Отсюда \cos \left(x-\frac\pi 4\right) =\frac<3\sqrt 2>5. Значит, x-\frac\pi 4= arc\cos \frac<3\sqrt 2>5+2\pi k, k \in \mathbb Z,

или x-\frac\pi 4= -arc\cos \frac<3\sqrt 2>5+2\pi t, t \in \mathbb Z.

Поэтому x=\frac\pi 4+arc\cos \frac<3\sqrt 2>5+2\pi k,k \in \mathbb Z,

или x =\frac\pi 4-arc\cos \frac<3\sqrt 2>5+2\pi t,t \in \mathbb Z.

Найденные значения x принадлежат области определения.

б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=\frac\pi 4+arccos \frac<3\sqrt 2>5 и b=\frac\pi 4-arccos \frac<3\sqrt 2>5.

1. Докажем вспомогательное неравенство:

Заметим также, что \left( \frac<3\sqrt 2>5\right) ^2=\frac<18> <25>значит \frac<3\sqrt 2>5

2. Из неравенств (1) по свойству арккосинуса получаем:

Отсюда \frac\pi 4+0

Аналогично, -\frac\pi 4

0=\frac\pi 4-\frac\pi 4 \frac\pi 4

При k=-1 и t=-1 получаем корни уравнения a-2\pi и b-2\pi.

\Bigg( a-2\pi =-\frac74\pi +arccos \frac<3\sqrt 2>5,\, b-2\pi =-\frac74\pi -arccos \frac<3\sqrt 2>5\Bigg). При этом -2\pi

-2\pi Значит, эти корни принадлежат заданному промежутку \left( -2\pi , -\frac<3\pi >2\right).

При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.

Действительно, если k\geqslant 1 и t\geqslant 1, то корни больше 2\pi. Если k\leqslant -2 и t\leqslant -2, то корни меньше -\frac<7\pi >2.

Ответ

а) \frac\pi4\pm arccos\frac<3\sqrt2>5+2\pi k, k\in\mathbb Z;

б) -\frac<7\pi>4\pm arccos\frac<3\sqrt2>5.

Задание №1175

Условие

а) Решите уравнение \sin \left( \frac\pi 2+x\right) =\sin (-2x).

б) Найдите все корни этого уравнения, принадлежащие промежутку [0; \pi ];

Решение

а) Преобразуем уравнение:

\cos x+2 \sin x \cos x=0,

x =\frac\pi 2+\pi n, n \in \mathbb Z;

x=(-1)^\cdot \frac\pi 6+\pi k, k \in \mathbb Z.

б) Корни, принадлежащие отрезку [0; \pi ], найдём с помощью единичной окружности.

Указанному промежутку принадлежит единственное число \frac\pi 2.

Ответ

а) \frac\pi 2+\pi n, n \in \mathbb Z; (-1)^\cdot \frac\pi 6+\pi k, k \in \mathbb Z;

б) \frac\pi 2.

Задание №1174

Условие

б) Найдите все корни этого уравнения, принадлежащие отрезку \left[ -\frac<3\pi ><2>; -\frac<\pi >2 \right].

Решение

а) Найдём ОДЗ уравнения: \cos 2x \neq -1, \cos (\pi +x) \neq -1; Отсюда ОДЗ: x \neq \frac \pi 2+\pi k,

k \in \mathbb Z, x \neq 2\pi n, n \in \mathbb Z. Заметим, что при \sin x=1, x=\frac \pi 2+2\pi k, k \in \mathbb Z.

Полученное множество значений x не входит в ОДЗ.

Значит, \sin x \neq 1.

Разделим обе части уравнения на множитель (\sin x-1), отличный от нуля. Получим уравнение \frac 1<1+\cos 2x>=\frac 1<1+\cos (\pi +x)>, или уравнение 1+\cos 2x=1+\cos (\pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 \cos ^2 x=1-\cos x. Это уравнение с помощью замены \cos x=t, где -1 \leqslant t \leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=\frac12. Возвращаясь к переменной x , получим \cos x = \frac12 или \cos x=-1, откуда x=\frac \pi 3+2\pi m, m \in \mathbb Z, x=-\frac \pi 3+2\pi n, n \in \mathbb Z, x=\pi +2\pi k, k \in \mathbb Z.

б) Решим неравенства

1) -\frac<3\pi >2 \leqslant \frac<\pi >3+2\pi m \leqslant -\frac \pi 2 ,

2) -\frac<3\pi >2 \leqslant -\frac \pi 3+2\pi n \leqslant -\frac \pi

3) -\frac<3\pi >2 \leqslant \pi+2\pi k \leqslant -\frac \pi 2 , m, n, k \in \mathbb Z.

1) -\frac<3\pi >2 \leqslant \frac<\pi >3+2\pi m \leqslant -\frac \pi 2 , -\frac32 \leqslant \frac13+2m \leqslant -\frac12 -\frac<11>6 \leqslant 2m \leqslant -\frac56 , -\frac<11> <12>\leqslant m \leqslant -\frac5<12>.

Нет целых чисел, принадлежащих промежутку \left [-\frac<11><12>;-\frac5<12>\right] .

2) -\frac <3\pi>2 \leqslant -\frac<\pi >3+2\pi n \leqslant -\frac<\pi ><2>, -\frac32 \leqslant -\frac13 +2n \leqslant -\frac12 , -\frac76 \leqslant 2n \leqslant -\frac1<6>, -\frac7 <12>\leqslant n \leqslant -\frac1<12>.

Нет целых чисел, принадлежащих промежутку \left[ -\frac7 <12>; -\frac1 <12>\right].

3) -\frac<3\pi >2 \leqslant \pi +2\pi k\leqslant -\frac<\pi >2, -\frac32 \leqslant 1+2k\leqslant -\frac12, -\frac52 \leqslant 2k \leqslant -\frac32, -\frac54 \leqslant k \leqslant -\frac34.

Этому неравенству удовлетворяет k=-1, тогда x=-\pi.

Ответ

а) \frac \pi 3+2\pi m; -\frac \pi 3+2\pi n; \pi +2\pi k, m, n, k \in \mathbb Z;

ЕГЭ Профиль №13. Тригонометрические уравнения

13 задания профильного ЕГЭ по математике представляет собой уравнение с отбором корней принадлежащих заданному промежутку. Одним из видов уравнений которое может оказаться в 13 задание является тригонометрическое уравнение. Как правило, это достаточно простое тригонометрическое уравнение для решения которого потребуется знания основных тригонометрических формул, и умение решать простейшие тригонометрические уравнения. Отбор корней тригонометрического уравнения принадлежащих заданному промежутку можно производить одним из четырех способов: методом перебора, с помощью тригонометрической окружности, с помощью двойного неравенства и графическим способом. В данном разделе представлены тригонометрические уравнения (всего 226) разбитые на три уровня сложности. Уровень А — это простейшие тригонометрические уравнения, которые являются подготовительными для решения реальных тригонометрических уравнений предлагаемых на экзамене. Уровень В — состоит из уравнений, которые предлагали на реальных ЕГЭ и диагностических работах прошлых лет. Уровень С — задачи повышенной сложности.


источники:

http://academyege.ru/theme/trigonometricheskie-uravneniya-3.html

http://math100.ru/prof-ege13-4/