Sn oh cl уравнение диссоциации

Электролитическая диссоциация. Гидролиз растворов

экспериментально изучить электропроводность некоторых веществ и растворов, зависимость реакционной способности от степени диссоциации электролитов, факторы, нарушающие равновесие в растворах электролитов.

1. Электролиты. Сильные и слабые электролиты.

2. Электролитическая диссоциация. Основные положения теории Аррениуса.

3. Степень и константа диссоциации. Факторы, влияющие на степень диссоциации.

4. Равновесие в растворах электролитов.

5. Влияние одноименных ионов на диссоциацию слабых электролитов.

Электролиты – вещества, способные распадаться на ионы (положительные катионы и отрицательные анионы), их растворы проводят электрический ток.

Неэлектролиты– не распадаются на ионы, их растворы не проводят ток.

Электролитическая диссоциация – распад молекул электролита на ионы в растворе или расплаве.

Диссоциация классов соединений:

многоосновных кислот ступенчато, в основном по первой ступени:

H2S « H + + HS – (первая ступень)

HS – « H + + S 2– (вторая ступень)

оснований NaOH ® Na + + OH –

многокислотных оснований ступенчато, в основном по первой ступени

Mg(OH)2 « MgOH + + OH – (первая ступень)

MgOH + « Mg 2+ + OH – (вторая ступень)

амфотерных оснований возможна как кислот и как оснований:

всех солей растворимых в воде – практически полностью, из них:

кислых солей ступенчато, в основном по 1 ступени

NaHCO3 « Na + + HCO3 – (первая ступень)

HCO3 – « H + + CO3 2– (вторая ступень)

основных солей ступенчато, в основном по 1 ступени

CuOHCl « CuOH + + Cl – (первая ступень)

CuOH + « Cu +2 + OH – (вторая ступень)

О силе электролита можно судить по электропроводности его раствора и по химической активности в реакциях ионного обмена.

Степень диссоциации (α) – отношение числа молекул электролита распавшихся на ионы к общему числу его молекул в растворе. Понятие степени диссоциации неприменимо к сильным электролитам.

Сильные электролиты – вещества, диссоциирующие в растворах полностью:

сильные кислотыHCl, HBr, HI, HNO3, H2SO4, HClO4, HMnO4
щелочиNaOH, KOH, LiOH, RbOH, Ba(OH)2, Ca(OH)2
солиВсе растворимые в воде

Слабые электролиты – вещества, диссоциирующие частично, в их растворах устанавливается равновесие между молекулами и ионами.

a + + OH –

Закон разбавления Оствальда связывает константу и степень диссоциации:

, где , См — молярная концентрация

Если α значительно меньше 1, уравнение закона Оствальда упрощается:

, т.е. при разбавлении степень диссоциации вырастает.

Для бинарного электролита КАn (например НСlO, HCSN): [К + ]=[Аn – ]= .

Показатель константы диссоциации: PК = – lg Кдис.

Изменение условий смещает динамическое равновесие процесса диссоциации:

Разбавление приводит к возрастанию степени диссоциации электролитов.

Добавка одноименного иона, т.е. увеличение концентрации одного из ионов ведет к снижению степени диссоциации электролита.

Гидролиз солей – взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита и сопровождающееся изменением рН раствора.

Гидролизу подвергается ион слабого электролита, возможны 3 типа гидролиза.

1.Гидролиз по аниону Соль сильного основания и слабой кислоты СН3СООNa.

Молекулярное уравнение: CH3COONa + H2O « CH3COOH + NaOH

Ионно-молекулярное уравнение: СН3СОО – + НОН « СН3СООН + ОН –

Образующиеся при диссоциации анионы СН3СОО – связываются в слабый электролит СН3СООН. Ионы ОН – накапливаются, создавая в растворе щелочную среду (рН>7). Гидролиз тем сильнее, чем меньше Кдисс образующейся слабой кислоты.

Гидролиз солей многоосновных кислот протекает по стадиям, преимущественно по первой стадии.

1 стадия: K2S + H2O « KHS + KOH

S 2– + HOH « HS – + OH –

2 стадия: KHS + H2O « H2S + KOH

HS -– + HOH « H2S + OH –

2. Гидролиз по катиону. Соль слабого основания и сильной кислоты CuSO4 Гидролиз идет по катиону Cu 2+ и протекает в две стадии с образованием преимущественно основной соли.

Реакция среды кислая (рН + . Гидролиз тем сильнее, чем меньше Кдисс образующегося основания.

1 стадия: Cu 2+ + H2O « CuOH + + H +

2 стадия: CuOH + + HOH « Cu(OH)2 + H +

3. Гидролиз по катиону и аниону. Соль слабого основания и слабой кислоты CH3COONH4.

Среда раствора нейтральная, слабокислая или слабощелочная в зависимости от Кдисс образующихся слабых электролитов.

Усиление гидролиза, совместный гиролиз солей слабого основания CrCl3 и слабой кислоты Na2S приводит к необратимому гидролизу каждой из солей до конца с образованием слабого основания и слабой кислоты.

Гидролиз соли CrCl3 идет по катиону: Cr 3+ + HOH « CrOH 2+ + H +

Гидролиз соли Na2S идет по аниону: S 2– + HOH « HS – + OH –

Гидролиз усиливается, т.к. образуется слабый электролит Н2О: H + +OH – =Н2О

Молекулярное уравнение: 2CrCl3+3Na2S+6H2O=2Cr(OH)3+3H2S+6NaCl Ионно-молекулярное уравнение: 2Cr 3+ + 3S 2– + 6H2O = 2Cr(OH)3¯ + 3H2

Соли сильных оснований и сильных кислот гидролизу не подвергаются, т.к. ни один из ионов соли не образует с ионами Н + и ОН – воды слабых электролитов. Водные растворы таких солей имеют нейтральную среду.

1. Степень диссоциации СНзСООН в 0,1М растворе равна 1,32∙10 -5 Кдис и рК кислоты.

2. Кдис HCN равна 7.9∙10 -10 . Найти степень диссоциации HCN в 0,001 М растворе.

3. Вычислить концентрацию ионов водорода в 0,1 М растворе НСlO ( Кдис=5·10 -8 )

4. Во сколько раз уменьшится [H + ] в 0,2 М растворе НСООН (Кдис=0,8·10 -4 ), если к 1л этого раствора добавить 0,1моль соли НСООNа (соль диссоциирует полностью)?

5. Написать ионное уравнение реакции: Мg(ОН)2 + 2НС1 = МgС12 + Н2О

6. Написать уравнения ступенчатой диссоциации фосфорной кислоты в водном растворе. Вычислите Кдис Н3РО4 по 1-й ступени, если в 0,1 н растворе α=36 %.

7. Какое значение рН имеет раствор уксусной кислоты с массовой долей ω=0,6%?

8. Будет ли одинаковой электрическая проводимость водных и спиртовых растворов одного и того же вещества при одной и той же концентрации?

Опыт 1.Сравнение электропроводности растворов некоторых веществ

1. Угольные электроды, укрепленные на деревянной дощечке и последовательно соединенные с лампой, включить в электрическую сеть

2. Соблюдая меры предосторожности поочередно опускать электроды в стаканы с веществами и растворами, указанными в таблице, каждый раз промывая электроды в стакане с дистиллированной водой.

3. Наблюдать загорание электрической лампы

4. Внести данные в Таблицу 1, записать уравнения реакции

5. Объяснить разницу в степени накала лампочки в растворах.

6. Вделать вывод о силе электролитов по силе накала лампы.

Диссоциация кислот, оснований, амфотерных гидроксидов и солей в водных растворах

Кислоты — это электролиты, которые при диссоциации образуют только один вид катионов — катионы водорода Н + . Составим уравнение электролитической диссоциации сильных кислот: а) одноосновной азотной кислоты HNО3 и б) двухосновной серной кислоты H2SO4:

Число ступеней диссоциации зависит от основности слабой кислоты Нх(Ас), где х — основность кислоты.

Пример: Составим уравнения электролитической диссоциации слабой двухосновной угольной кислоты Н2СО3.

Первая ступень диссоциации (отщепление одного иона водорода Н + ):

Константа диссоциации по первой ступени:

Вторая ступень диссоциации (отщепление иона водорода Н + от сложного иона НСО3 — ):

Растворы кислот имеют некоторые общие свойства, которые, согласно теории электролитической диссоциации, объясняются присутствием в их растворах гидратированных ионов водорода Н + (Н3О + ).

Основания — это электролиты, которые при диссоциации образуют только один вид анионов — гидроксид-ионы ОН — .

Составим уравнение электролитической диссоциации однокислотного основания гидроксида калия КОН:

Сильное двухкислотное основание Ca(OH)2 диссоциирует так:

Слабые многокислотные основания диссоциируют ступенчато. Число ступеней диссоциации определяется кислотностью слабого основания Ме(ОН)у, где у — кислотность основания.

Составим уравнения электролитической диссоциации слабого двухкислотного основания — гидроксида железа (II) Fe(OH)2.

Первая ступень диссоциации (отщепляется один гидроксид-ион ОН — ):

Вторая ступень диссоциации (отщепляется гидроксид-ион ОН — от сложного катиона FeOH + ):

Основания имеют некоторые общие свойства. Общие свойства оснований обусловлены присутствием гидроксид-ионов ОН — .

Каждая ступень диссоциации слабых многоосновных кислот и слабых многокислотных оснований характеризуется определенной константой диссоциации: K1, K2, K3, причем K1 > K2 > K3. Это объясняется тем, что энергия, которая необходима для отрыва иона Н + или ОН — от нейтральной молекулы кислоты или основания, минимальна. При диссоциации по следующей ступени энергия увеличивается, потому что отрыв ионов происходит от противоположно заряженных частиц.

Амфотерные гидроксиды могут реагировать и с кислотами, и с основаниями. Теория электролитической диссоциации объясняет двойственные свойства амфотерных гидроксидов.

Амфотерные гидроксиды — это слабые электролиты, которые при диссоциации образуют одновременно катионы водорода Н + и гидроксид-анионы ОН — , т. е. диссоциируют по типу кислоты и по типу основания.

К амфотерным гидроксидам относятся Ве(ОН)2, Zn(OH)2, Sn(OH)2, Al(OH)3, Cr(OH)3 и другие. Амфотерным электролитом является также вода Н2O.

В амфотерных гидроксидах диссоциация по типу кислот и по типу оснований происходит потому, что прочность химических связей между атомами металла и кислорода (Ме—О) и между атомами кислорода и водорода (О—Н) почти одинаковая. Поэтому в водном растворе эти связи разрываются одновременно, и амфотерные гидроксиды при диссоциации образуют катионы Н + и анионы ОН — .

Составим уравнение электролитической диссоциации гидроксида цинка Zn(OH)2 без учета ее ступенчатого характера:

Нормальные соли — сильные электролиты, образующие при диссоциации катионы металла и анионы кислотного остатка.

Составим уравнения электролитической диссоциации нормальных солей: а) карбоната калия K2CO3, б) сульфата алюминия Al2(SO4)3:

Кислые соли — сильные электролиты, диссоциирующие на катион металла и сложный анион, в состав которого входят атомы водорода и кислотный остаток.

Составим уравнения электролитической диссоциации кислой соли гидрокарбоната натрия NaHCО3.

Сложный анион НСО3 — (гидрокарбонат-ион) частично диссоциирует по уравнению:

Основные соли — электролиты, которые при диссоциации образуют анионы кислотного остатка и сложные катионы состоящие из атомов металла и гидроксогрупп ОН — .

Составим уравнение электролитической диссоциации основной соли Fe(OH)2Cl — дигидроксохлорида железа (III):

Сложный катион частично диссоциирует по уравнениям:

Для обеих ступеней диссоциации Fe(OH)2 + .

Электролитическая диссоциация

Материалы портала onx.distant.ru

Примеры решения задач

Задачи для самостоятельного решения

Степень диссоциации

Вещества, которые в растворах или расплавах полностью или частично распадаются на ионы, называются электролитами.

Степень диссоциации α — это отношение числа молекул, распавшихся на ионы N′ к общему числу растворенных молекул N:

α = N′/N

Степень диссоциации выражают в процентах или в долях единицы. Если α =0, то диссоциация отсутствует и вещество не является электролитом. В случае если α =1, то электролит полностью распадается на ионы.

Классификация электролитов

Согласно современным представлениям теории растворов все электролиты делятся на два класса: ассоциированные (слабые) и неассоциированные (сильные) . Неассоциированные электролиты в разбавленных растворах практически полностью диссоциированы на ионы. Для этого класса электролитов a близко к единице (к 100 %). Неассоциированными электролитами являются, например, HCl, NaOH, K2SO4 в разбавленных водных растворах.

Ассоциированные электролиты подразделяются на три типа:

      1. Слабые электролиты существуют в растворах как в виде ионов, так и в виде недиссоциированных молекул. Примерами ассоциированных электролитов этой группы являются, в частности, Н2S, Н2SO3, СН3СOОН в водных растворах.
      2. Ионные ассоциаты образуются в растворах путем ассоциации простых ионов за счет электростатического взаимодействия. Ионные ассоциаты возникают в концентрированных растворах хорошо растворимых электролитов. В результате в растворе находятся как простые ионы, так и ионные ассоциаты. Например, в концентрированном водном растворе КCl образуются простые ионы К + , Cl — , а также возможно образование ионных пар (К + Cl — ), ионных тройников (K2Cl + , KCl2 — ) и ионных квадруполей (K2Cl2, KCl3 2- , K3Cl 2+ ).
      3. Комплексные соединения (как ионные, так и молекулярные), внутренняя сфера которых ступенчато диссоциирует на ионные и (или) молекулярные частицы.
        Примеры комплексных ионов: [Cu(NH3)4] 2+ , [Fe(CN)6] 3+ , [Cr(H2O)3Cl2] + .

При таком подходе один и тот же электролит может относиться к различным типам в зависимости от концентрации раствора, вида растворителя и температуры. Подтверждением этому являются данные, приведенные в таблице.

Таблица. Характеристика растворов KI в различных растворителях

Концентрация электролита, С, моль/л Температура

t, о С

Растворитель Тип электролита
0,0125Н2ОНеассоциированный (сильный)
525Н2ОИонный ассоциат
0,00125С6Н6Ассоциированный (слабый)

Приближенно, для качественных рассуждений можно пользоваться устаревшим делением электролитов на сильные и слабые. Выделение группы электролитов “средней силы” не имеет смысла. Эти электролиты являются ассоциированными. К слабым электролитам обычно относят электролиты, степень диссоцииации которых мала α

Таким образом, к сильным электролитам относятся разбавленные водные растворы почти всех хорошо растворимых в воде солей, многие разбавленные водные растворы минеральных кислот (НСl, HBr, НNО3, НСlO4 и др.), разбавленные водные растворы гидроксидов щелочных металлов. К слабым электролитам принадлежат все органические кислоты в водных растворах, некоторые водные растворы неорганических кислот, например, H2S, HCN, H2CO3, HNO2, HСlO и др. К слабым электролитам относится и вода.

Диссоциация электролитов

Уравнение реакции диссоциации сильного электролита можно представить следующим образом. Между правой и левой частями уравнения реакции диссоциации сильного электролита ставится стрелка или знак равенства:

HCl → H + + Cl —

Допускается также ставить знак обратимости, однако в этом случае указывается направление, в котором смещается равновесие диссоциации, или указывается, что α≈1. Например:

NaOH → Na + + OH —

Диссоциация кислых и основных солей в разбавленных водных растворах протекает следующим образом:

NaHSO3 → Na + + HSO3

Анион кислой соли будет диссоциировать в незначительной степени, поскольку является ассоциированным электролитом:

HSO3 — → H + + SO3 2-

Аналогичным образом происходит диссоциация основных солей:

Mg(OH)Cl → MgOH + + Cl —

Катион основной соли подвергается дальнейшей диссоциации как слабый электролит:

MgOH + → Mg 2+ + OH —

Двойные соли в разбавленных водных растворах рассматриваются как неассоциированные электролиты:

Комплексные соединения в разбавленных водных растворах практически полностью диссоциируют на внешнюю и внутреннюю сферы:

В свою очередь, комплексный ион в незначительной степени подвергается дальнейшей диссоциации:

[Fe(CN)6] 3- → Fe 3+ + 6CN —

Константа диссоциации

При растворении слабого электролита К А в растворе установится равновесие:

КА ↔ К + + А —

которое количественно описывается величиной константы равновесия Кд, называемой константой диссоциации :

Kд = [К + ] · [А — ] /[КА] (2)

Константа диссоциации характеризует способность электролита диссоциировать на ионы. Чем больше константа диссоциации, тем больше ионов в растворе слабого электролита. Например, в растворе азотистой кислоты HNO2 ионов Н + больше, чем в растворе синильной кислоты HCN, поскольку К(HNO2) = 4,6·10 — 4 , а К(HCN) = 4,9·10 — 10 .

Для слабых I-I электролитов (HCN, HNO2, CH3COOH) величина константы диссоциации Кд связана со степенью диссоциации α и концентрацией электролита c уравнением Оствальда:

Кд = (α 2· с)/(1-α) (3)

Для практических расчетов при условии, что α

Кд = α 2· с (4)

Поскольку процесс диссоциации слабого электролита обратим, то к нему применим принцип Ле Шателье. В частности, добавление CH3COONa к водному раствору CH3COOH вызовет подавление собственной диссоциации уксусной кислоты и уменьшение концентрации протонов. Таким образом, добавление в раствор ассоциированного электролита веществ, содержащих одноименные ионы, уменьшает его степень диссоциации.

Следует отметить, что константа диссоциации слабого электролита связана с изменением энергии Гиббса в процессе диссоциации этого электролита соотношением:

ΔGT 0 = — RTlnKд (5)

Уравнение (5) используется для расчета констант диссоциации слабых электролитов по термодинамическим данным.

Примеры решения задач

Задача 1. Определите концентрацию ионов калия и фосфат-ионов в 0,025 М растворе K3PO4.

Решение. K3PO4 – сильный электролит и в водном растворе диссоциирует полностью:

Следовательно, концентрации ионов К + и РО4 3- равны соответственно 0,075М и 0,025М.

Задача 2. Определите степень диссоциации αд и концентрацию ионов ОН — (моль/л) в 0,03 М растворе NH3·H2О при 298 К, если при указанной температуре Кд(NH3·H2О) = 1,76× 10 — 5 .

Решение. Уравнение диссоциации электролита:

Концентрации ионов: [NH4 + ] = α С ; [OH — ] = α С , где С – исходная концентрация NH 3 ·H 2 О моль/л. Следовательно:

Kд = αС · αС /(1 — αС)

Кд α 2 С

Константа диссоциации зависит от температуры и от природы растворителя, но не зависит от концентрации растворов NH 3 ·H 2 О . Закон разбавления Оствальда выражает зависимость α слабого электролита от концентрации.

α = √( Кд / С) = √(1,76× 10 — 5 / 0,03 ) = 0,024 или 2,4 %

[OH — ] = αС, откуда [OH — ] = 2,4·10 — 2 ·0,03 = 7,2·10 -4 моль/л.

Задача 3. Определите константу диссоциации уксусной кислоты, если степень диссоциации CH3CОOH в 0,002 М растворе равна 9,4 %.

Решение. Уравнение диссоциации кислоты:

CH3CОOH → СН3СОО — + Н + .

α = [Н + ] / Сисх(CH3CОOH)

откуда [Н + ] = 9,4·10 — 2 ·0,002 = 1,88·10 -4 М.

Kд = [Н + ] 2 / Сисх(CH3CОOH)

Константу диссоциации можно также найти по формуле: Кд ≈ α 2 С .

Задача 4. Константа диссоциации HNO2 при 298К равна 4,6× 10 — 4 . Найдите концентрацию азотистой кислоты, при которой степень диссоциации HNO2 равна 5 %.

Решение.

Кд = α 2 С , откуда получаем С исх (HNO 2 ) = 4,6·10 — 4 /(5·10 — 2 ) 2 = 0,184 М.

Задача 5. На основе справочных данных рассчитайте константу диссоциации муравьиной кислоты при 298 К.

Решение. Уравнение диссоциации муравьиной кислоты

В “Кратком справочнике физико–химических величин” под редакцией А.А. Равделя и А.М. Пономаревой приведены значения энергий Гиббса образований ионов в растворе, а также гипотетически недиссоциированных молекул. Значения энергий Гиббса для муравьиной кислоты и ионов Н + и СООН — в водном растворе приведены ниже:

Вещество, ионНСООНН +СООН —
ΔGT 0 , кДж/моль— 373,00— 351,5

Изменение энергии Гиббса процесса диссоциации равно:

ΔGT 0 = — 351,5- (- 373,0) = 21,5 кДж/моль.

Для расчета константы диссоциации используем уравнение (5). Из этого уравнения получаем:

lnKд = — Δ GT 0 /RT= — 21500/(8,31 298) = — 8,68

Откуда находим: Kд = 1,7× 10 — 4 .

Задачи для самостоятельного решения

1. К сильным электролитам в разбавленных водных растворах относятся:

  1. СН3СOOH
  2. Na3PO4
  3. NaCN
  4. NH3
  5. C2H5OH
  6. HNO2
  7. HNO3

13.2. К слабым электролитам в водных растворах относятся:

3. Определите концентрацию ионов NH4 + в 0,03 М растворе (NH4)2Fe(SO4)2;

4. Определите концентрацию ионов водорода в 6 мас.% растворе H2SO4, плотность которого составляет 1,038 г/мл. Принять степень диссоциации кислоты по первой и второй ступеням равной 100 %.

5. Определите концентрацию гидроксид-ионов в 0,15 М растворе Ba(OH)2.

6. Степень диссоциации муравьиной кислоты в 0,1 М растворе равна 4 %. Рассчитайте Концентрацию ионов водорода в этом растворе и константу диссоциации НСООН.

7. Степень диссоциации муравьиной кислоты в водном растворе увеличится при:

а) уменьшении концентрации HCOOH;

б) увеличении концентрации HCOOH;

в) добавлении в раствор муравьиной кислоты HCOONa;

г) добавлении в раствор муравьиной кислоты НCl.

8. Константа диссоциации хлорноватистой кислоты равна 5× 10 — 8 . Определите концентрацию HClO, при которой степень диссоциации HClO равна 0,5 %, и концентрацию ионов Н + в этом растворе.

0,002М; 1× 10 — 5 М.

9. Вычислите объем воды, который необходимо добавить к 50 мл 0,02 М раствора NH 3·H 2О, чтобы степень диссоциации NH 3·H 2О увеличилась в 10 раз, если Кд(NH4OH) = 1,76·10 — 5 .

10. Определите степень диссоциации азотистой кислоты в 0,25 М растворе при 298 К, если при указанной температуре Кд(HNO2) = 4,6× 10 — 4 .


источники:

http://al-himik.ru/dissociacija-kislot-osnovanij-amfoternyh-gidroksidov-i-solej-v-vodnyh-rastvorah/

http://chemege.ru/el-dissociaciya/