Собственные функции являются решением уравнения

Собственные значения и собственные функции операторов

Вы будете перенаправлены на Автор24

Собственные значения, собственные функции

Физический смысл имеют те решения уравнения Шредингера:

которые удовлетворяют естественным (стандартным) условиям. Согласно им волновая функция должна быть конечной, однозначной, непрерывной и гладкой во всем пространстве, даже в точках разрыва потенциальной энергии. Решения, которые удовлетворяют данным требованиям, возможны не при любых значениях $E$, а только при некоторых, которые обозначим: $E_1,E_2,\dots ,\ E_n.$

Значения энергии ($E_1,E_2,\dots ,\ E_n.$), при которых уравнение (1) имеет необходимые решения, называют собственными значениями. При этом функции $\Psi_1,\ \Psi_2,\ \dots ,\ \Psi_n$, которые являются решениями уравнения (1) при $E=E_1,E=E_2,\dots ,E=\ E_n$ называют собственными функциями, принадлежащими собственным значениям. В этом состоит сущность общего принципа квантования.

Собственные значения энергии $E$ принимают за возможные значения энергии в соответствующих стационарных состояниях. Данные значения могут быть дискретными или непрерывными, при этом возникает дискретный или непрерывный энергетический спектр.

Собственные значения и собственные функции операторов

Рассмотрим уравнение вида:

где $a_n$ — собственные значения, $\Psi_n$ — собственные функции, соответствующие собственным значениям. Каждая из этих функций предполагается нормированной так, что:

Итак, значения, которые может принимать данная физическая величина в квантовой механике, называют собственными значениями. Совокупность собственных значений — спектр собственных значений рассматриваемой величины.

Готовые работы на аналогичную тему

Если система находится в каком-то состоянии, которое характеризует волновая функция $\Psi$, то проведение измерения некоторой величины $a$, относящейся к исследуемой системе, даст одно из собственных значений $a_n.$

Собственные значения всех операторов физических величин принимают исключительно действительные значения.

Совокупность собственных функций составляет полную систему, это значит, что любое состояние системы $\Psi$ представимо в виде единственного и однозначного разложения в ряд по собственным функциям:

где $<\left|C_n\right|>^2$ — вероятность того, что при измерении физической величины, которая соответствует оператору $\hat$ будет соответствовать измерение $A_n$ для волновой функции $\Psi_n.$

Среднее значение физической величины

Среднее значение любой физической величины ($\left\langle A\right\rangle $) в квантовой механике определяется из вероятностного смысла волновой функции:

Аналогов такого усреднения в классической физике нет. В ней часто проводят усреднение по времени для некоторой величины. Для большого количества частиц проводят усреднения по ансамблю, как например, вычисляют среднюю скорость движения молекул в веществе. В рассматриваемом нами случае усреднение производится по квантовому состоянию микрообъекта в фиксированный момент времени. Провести подобное усреднение эмпирически весьма затруднительно.

Среднее значение по квантовому состоянию величины координаты частицы можно определить как:

Дисперсия физической величины

Подобно теории вероятности в квантовой физике вводят дисперсию среднего значения координаты. Она определяет разброс полученных при измерении величин относительно среднего значения исследуемой координаты. Дисперсию при этом определяют как:

где $\left\langle x^2\right\rangle =\int\limits_V<\Psi^*\left(\overrightarrow,t\right)x^2 \Psi\left(\overrightarrow,t\right)dV>$ среднее значение квадрата координаты частицы.

Аналогичное выражение можно использовать для дисперсии величины импульса:

где квадрат вредней величины импульса равен:

Сделав обобщение, можно записать, что дисперсия некоторой величины $A$, которая определяет разброс результатов измерений по отношению к среднему, можно найти как:

Отметим, что дисперсия величины $A$ в собственном состоянии равна нулю, что означает физическая величина, имеет определенное значение, которое точно определено и равно собственному значению оператора $\hat.$

Решение:

Используем выражение для оператора импульса:

подставим его в уравнение:

вместо оператора $\hat$, имеем:

Уравнению (1.3) удовлетворяет функция:

Данная функция удовлетворяет естественным условиям, то есть искомая функция найдена.

Задание: Какова средняя кинетическая энергия частицы в одномерной прямоугольной потенциальной яме с непроницаемыми стенками ($0

Решение:

Проведем нормирование функции $\Psi\left(x\right).$Найдем коэффициент $A$. Для этого запишем:

Величина средней кинетической энергии определяется как:

\[\left\langle E_k\right\rangle =\int\limits^l_0<\Psi^*>\left(<\hat>_k \Psi\right)dx\left(2.2\right),\]

Подставим результат выражения (2.3), стоящий в правой части в формулу (2.2), имеем:

Ответ: $\left\langle E_k\right\rangle =\frac<5>\frac<<\hbar >^2>.$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 12 05 2021

Собственные функции являются решением уравнения

Аналог классического волнового уравнения был предложен Э. Шредингером в 1925 г. Как и классическое уравнение, уравнение Шредингера связывает производные волновой функции по времени и координате. Уравнение Шредингера описывает поведение любых нерелятивистских систем. На примерах частицы, находящейся в бесконечно глубокой яме, и гармонического осциллятора рассмотрены простейшие квантовые системы, получены дискретные спектры состояний. Возможности описания динамики данных систем ограничены набором квантовых чисел, отражающих универсальные и внутренние симметрии квантовых систем.

4.1. Уравнение Шредингера

В квантовой физике изменение состояния частицы описывается уравнением Шредингера

(4.1)

где – оператор Гамильтона – аналог классической функции Гамильтона

в которой и заменены операторами импульса x, y, z и координаты , , :

х → = х, y → = y, z → = z,

(4.2)

Уравнение Шредингера

Зависящее от времени уравнение Шредингера:

где – гамильтониан системы.

Разделение переменных. Запишем Ψ(,t) = ψ()θ(t), где ψ является функцией координат, а θ – функция времени. Если не зависит от времени, тогда уравнение ψ = iћψ принимает вид θψ = iћψθ или

Левая часть является функцией только координат, а правая не зависит от переменной x. Поэтому обе части последнего уравнения должны быть равны одной и той же постоянной, которую обозначим E

θ(t) = exp(−iEt/ћ), ψ() = Eψ() и Ψ(,t) = ψ()exp(−iEt/ћ).

Уравнение ψ() = Eψ() называют стационарным уравнением Шредингера. Для одномерной системы с массой m в поле с потенциалом U(x) оно принимает вид:

или

Для трехмерной системы с массой m в поле с потенциалом U():

−(ћ 2 /2m)Δψ() + U()ψ() = Eψ(),

где Δ – лапласиан.

Так как уравнение Шредингера является линейным уравнением первого порядка по времени, то с его помощью по заданному значению волновой функции Ψ(x, y, z, 0) в момент времени t = 0 можно найти её значение в произвольный момент времени t − Ψ(x, y, z, t).

Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы не зависит от времени, имеет вид

ψ() = Eψ().(4.3)

Это уравнение называют стационарным уравнением Шредингера.

Так как в стационарном состоянии

Ψ(,t) = ψ()exp(−iEt/ћ)(4.4)

и вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(,t)|, то она

|ψ(x,y,z)| 2 , т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, поскольку выражается через квадрат модуля волновой функции.

4.2. Частица в одномерной прямоугольной яме с бесконечными стенками

Потенциальная энергия U(x) в прямоугольной яме удовлетворяет следующим условиям:

(4.5)


Рис.4.1. Прямоугольная яма с бесконечными стенками

Частица находится в области 0 ≤ x ≤ L. Вне этой области ψ(x) = 0. Уравнение Шредингера для частицы, находящейся в области 0 ≤ x ≤ L

(4.6)

Волновая функция, являющаяся решением уравнения (4.9), имеет вид

ψ(x)= Аsin kx + Bcos kx,(4.7)

где k = (2mE/ћ 2 ) 1/2 . Из граничных условий ψ(0) = 0, ψ(L) = 0 и условий непрерывности волновой функции следует

Аsin kL = 0.(4.8)

kL = nπ, n = 1, 2, 3, … , то есть внутри потенциальной ямы с бесконечно высокими стенками устанавливаются стоячие волны, а энергия состояния частиц имеет дискретный спектр значений En

n = 1, 2, 3, …(4.9)

Частица может находиться в каком-то одном из множества дискретных состояний, доступных для неё.
Каждому значению энергии En соответствует волновая функция ψn(x), которая с учетом условия нормировки

(4.10)

В отличие от классической, квантовая частица в прямоугольной яме не может иметь энергию
E 2 π 2 /(2mL 2 ). Состояния частицы ψn в одномерном поле бесконечной потенциальной ямы полнос­тью описывается с помощью одного квантового числа n. Спектр энергий дискретный.

Рис. 4.2. Уровни энергии и волновые функции частицы Ψ в бесконечной прямоугольной яме. Квадрат модуля волновой функции |Ψ| 2 определяет вероятность нахождения частицы в различных точках потенциальной ямы.

4.3. Гармонический осциллятор

Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид

(4.11)

В этом случае одномерное уравнение Шредингера имеет вид

(4.12)

Допустимые значения полной энергии определяются формулой

En = ћω0(n + 1/2), n = 0, 1, 2,(4.13)

В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.

Частица в одномерной потенциальной яме

Одномерная прямоугольная яма шириной L:

n = 1, 2, …

Одномерный гармонический осциллятор:

En = ћω0(n + 1/2), n = 0, 1, 2,

4.4. Частица в поле с центральной симметрией

В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид

(4.14)

Решение уравнения (4.14) записываются в виде произведения радиальной и угловой функций

ψ(r,θ,φ) = Rnl(r)Ylm(θ,φ),(4.15)

где радиальная функция Rnl(r) и угловая функция Ylm(θ,φ), называемая сферической, удовлетворяют уравнениям

2 Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)(4.16)
Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)
(4.17)

Уравнение (4.16) определяет возможные собственные значения l и собственные функции Ylm(θ,φ) оператора квадрата момента 2 . Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции Rnl(r), от которых зависит энергия системы (рис. 4.3).
Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции Rnl(r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.

Рис. 4.3. Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
r0 = ћ 2 /mee 2 ≈ 0.529·10 8 cм.

Решения уравнения

существуют лишь при определенных значениях квантовых чисел n (радиальное квантовое число), l (орбитальное квантовое число) и m (магнитное квантовое число).
Возможные энергетические состояния системы (уровни энергии) определяются числами n и l и в случае сферически симметричных состояний не зависят от квантового числа m. Число n может быть только целым:
n = 1, 2, …, ∞. Число l может принимать значения 0, 1, 2, …, ∞.

4.5. Орбитальный момент количества движения

Собственные значения L 2 и Lz являются решением уравнений

2 Ylm(θ,φ) = L 2 Ylm(θ,φ) и zYlm(θ,φ) = LzYlm(θ,φ).

Они имеют следующие дискретные значения

L 2 = ћ 2 l(l + 1), где l = 0, 1, 2, 3, …,
Lz = ћm, где m = 0, ± 1, ± 2, ± 3,…, ± l.

Для характеристики состояний с различными значениями орбитального момента l обычно используют следующие обозначения:

Спектроскопические названия орбитальных моментов l

l = 0s-состояние
l = 1p-состояние
l = 2d-состояние
l = 3f-состояние
l = 4g-состояние
l = 5h-состояние
и. т. д.

Состоянию с l = 0 отвечает сферически симметричная волновая функция. В тех случаях, когда l ≠ 0 волновая функция не имеет сферической симметрии. Симметрия волновой функции определяется симметрией сферических функций Ylm(θ,φ). Имеет место интересное квантовое явление, когда решение сферически симметричной задачи (потенциал описывает сферически симметричную систему) приводит к состояниям, не обладающим сферической симметрией. Таким образом, симметрия уравнений не обязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности этих решений.
Для частицы, находящейся в сферически симметричном потенциале, величина орбитального момента количества движения L:

(4.18)

Обычно, для упрощения, когда говорят о величине орбитального момента количества движения, называют этой величиной квантовое число l, имея в виду, что между l и L имеется однозначная связь (4.18).

Рис. 4.4 Возможные ориентации вектора при квантовом числе l = 2.

Так как величина l может принимать только целочисленные значения 0, 1, 2, 3,…, то и орбитальный момент количества движения L квантуется. Например, для частицы с l = 2 момент количества движения

=
= 6.58·10 -22 √6 МэВ·сек ≈ 2.6·10 — 34 Дж·сек.

Пространственное квантование. Орбитальный момент количества движения является векторной величиной. Так как величина орбитального момента количества движения квантуется, то и направление по отношению к выделенному направлению z, например, к внешнему магнитному полю, также квантуется и принимает дискретные значения Lz = ћm, где m изменяется от +l до –l, т. е. имеет 2l + 1 значений. Например, при l = 2 величина m принимает значения +2, +1, 0, -1, -2 (см. рис. 4.4). Вместе с тем энергия системы не зависит от m, т. е. от направления вектора , что является очевидным следствием сферической симметрии системы.
Состояние частицы, находящейся в сферически симметричном поле, полностью описывается тремя квантовыми числами: n, l и m.
Появление квантовых чисел связано со свойствами симметрии системы. Характер этой симметрии определяет возможные значения квантовых чисел. Очевидно, что система, описываемая функцией e im φ , примет прежнее значение только тогда, когда азимутальный угол φ в результате поворота вокруг оси z примет прежнее значение φ. Этому условию функция e im φ удовлетворяет только в случае, когда величина mφ кратна 2π. Т.е. величина m должна иметь целые значения. Так как необходимо учитывать вращение в двух противоположных направлениях и отсутствие вращения, единственно возможными значениями оказываются m = 0, ±1, ±2, … .

4.6. Спин

Спин − собственный момент количества движения частицы. Между значением вектора спина и квантовым числом спина s выполняется такое же соотношение, как между величиной значением вектора орбитального момента и орбитальным квантовым числом l:

2 = ћ 2 s(s + 1)(4.19)

В отличие от орбитального квантового числа l, которое может быть лишь целым числом или нулем, спиновое квантовое число s (в дальнейшем просто спин) может быть как целым (включая нуль), так и полуцелым, т. е. s = 0, 1/2, 1, 3/2, 2, 5/2, … , но при этом для каждой элементарной частицы спин может принимать единственное присущее этому типу частиц значение. Так, спины π-мезонов и К-мезонов равны 0. Спины электрона, протона, нейтрино, кварков и их античастиц равны 1/2. Спин фотона равен 1. Бозоны составляют класс частиц с целым значением спина, спин фермионов имеет полуцелое значение. Спин частицы невозможно изменить, также как её заряд или массу. Это её неизменная квантовая характеристика.
Как и в случае других квантовых векторов, проекция вектора спина на любое фиксированное направление в пространстве (например, на ось z) может принимать 2s + 1 значение:

szћ = ±sћ, ±(s − 1)ћ, ±(s − 2)ћ. ±1/2ћ или 0.

Число sz − это квантовое число проекции спина. Максимальная величина sz совпадает с s. Так как спин электрона равен 1/2, то проекция этого спина может принимать лишь два значения sz = ±1/2. Если проекция +1/2, то говорят, что спин направлен вверх, если проекция -1/2, то говорят, что спин направлен вниз.

4.7. Полный момент количества движения

Полный момент количества движения частицы или системы частиц является векторной суммой орбитального и спинового моментов количества движения.

= + .

Квадрат полного момента имеет значение:

2 = ћ 2 j(j + 1).

Квантовое число полного момента j, соответствующее сумме двух векторов и , может принимать ряд дискретных значений, отличающихся на 1:

j = l + s, l + s −1. |l − s|

Проекция на выделенную ось Jz также принимает дискретные значения:

Число значений проекции Jz равно 2j + 1. Если для и определены единственные значения проекций на ось z lz и sz, то jz также определена однозначно: jz = lz + sz.

4.8. Квантовые числа

Квантовые числа – это целые или дробные числа, которые определяют все возможные значения физической величины, характеризующей различные квантовые системы – атомы, атомные ядра, кварки и другие частицы.

Таблица квантовых чисел

nРадиальное квантовое число. Определяет число узлов волновой функции и энергию системы. n = 1, 2, …, ∞.
J, jПолный угловой момент J и его квантовое число j. Последнее никогда не бывает отрицательным и может быть целым или полуцелым в зависимости от свойств рассматриваемой системы. 2 = ћ 2 j(j + 1).
L, lОрбитальный угловой момент L и его квантовое число l. Интерпретация l такая же, как j, но l может принимать только целые значения, включая нуль: l = 0, 1, 2,…. L 2 = ћ 2 l(l + 1).
mМагнитное квантовое число. Проекция полного или орбитального углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента m = ±j, ±(j-1), …, ±1/2 или 0. Для орбитального m = ± l, ± (l-1), …, ±1, 0.
S, sСпиновый угловой момент S и его квантовое число s. Оно может быть либо положительным целым (включая нуль), либо полуцелым. s – неизменная характеристика частицы опреде­лен­ного типа. S 2 = ћ 2 s(s + 1).
szКвантовое число проекции спинового момента частицы на выделенную ось. Эта проекция может принимать значения szћ, где sz = ± s, ± (s -1), …, ±1/2 или 0.
P или πПространственная четность. Характеризует поведение системы при пространственной инверсии → — (зеркальном отражении). Полная четность частицы Р = π(-1) l , где π – её внутренняя четность, а (-1) l – её орбитальная четность. Внутренние четности кварков положительные, антикварков — отрицательные.
IИзоспин. Характеризует свойство зарядовой инвариантности сильных взаимодействий

Для обозначения спинового момента часто используют букву J.

Все состояния, в которых может находиться квантовая система, описываются с помощью полного набора квантовых чисел. Так в случае протона в ядре состояние протона описывается с помощью четырех квантовых чисел, соответствующих четырем степеням свободы – трем пространственным координатам и спину. Это

  • Радиальное квантовое число n ( 1, 2, …, ∞),
  • Орбитальное квантовое число l (0, 1, 2, …),
  • Проекция орбитального момента m (± l, ± (l-1), …, ±1, 0),
  • Спин протона s =1/2.

Для описания сферически-симметричных систем в квантовой физике используются различные сферически симметричные потенциалы с различной радиальной зависимостью:

  • Кулоновский потенциал U = Q/r,
  • Прямоугольная потенциальная яма
  • Потенциал типа гармонического осциллятора U = kr 2 ,
  • Потенциал Вудса-Саксона (с его помощью описываются внутриядерные взаимодействия):

где U0, а и R – положительные константы (R – радиус ядра). Во всех случаях сферически симметричные системы можно описать с помощью набора квантовых чисел n, l, j, jz, однако, в зависимости от радиального вида потенциала энергетический спектр состояний системы будет различным.
Существование сохраняющихся во времени физических величин тесно связано со свойствами симметрии гамильтониана системы. Например, в случае, если квантовая система обладает центральной симметрией U = U(r), то этой системе соответствует сохранение орбитального момента количества движения l и одной из его проекций m. При этом из-за сферической симметрии задачи энергия состояний не будет зависеть от величины m, т. е. состояния будут вырожденными по m.
Наряду с пространственными симметриями, связанными с непрерывными преобразованиями, в квантовой физике существуют и другие симметрии – дискретные. Одной из них является зеркальная симметрия волновой функции относительно инверсии координат (→ —). Оператору инверсии соответствует квантовое число четность, которое может принимать два значения +1 и -1 в зависимости от того, сохраняется ли знак волновой функции при инверсии или меняется на противоположный.
Система тождественных частиц характеризуется еще одной симметрией – симметрией относительно перестановок тождественных частиц. Эта симметрия определяется свойствами частиц, образующих систему. Системы частиц с целым спином (бозонов) описываются симметричными волновыми функциями, системы частиц с полуцелым спином (фермионов) − антисимметричными волновыми функциями.

Задачи

4.1. Вычислите допустимые уровни энергии электрона, находящегося в одномерной прямоугольной потенциальной яме шириной 10 -8 см, протона, находящегося в потенциальной яме 5 Фм, и шарика массой 1 г, находящегося в потенциальной яме 1 см.

4.2. Рассчитать энергию перехода между состояниями 1s и 2s в атоме водорода.

4.3. Найти значение полного момента j для протона в d-состоянии. Каким будет результат измерения полного момента протона в состоянии 1d5/2?

4.4. Найти полный момент (квантовое число j) системы двух нуклонов в s‑состоянии (l = 0).

4.5. Какие значения может иметь полный момент системы j, если
А. Нейтрон и протон находятся в состояниях с |l,s:j>n = |1, 1 /2: 3 /2>, |l,s:j>p = |1, 1 /2: 3 /2>?
Б. Два нейтрона находятся в состояниях с |l,s:j>1 = |1, 1 /2: 3 /2> и |l,s:j>2 = |1, 1 /2: 3 /2>?

4.6. А) Нейтрон находится в p-состоянии. Найти значения полного момента j и возможные значения проекции момента jz. Каким будет результат измерения орбитального момента частицы в этом состоянии? Б) Рассмотрите задачу А) для протона в d-состоянии.
Ответ: А) j = 3/2, 1/2; jz = ±3/2, ±1/2; L = ћ√ l(l +1) = √ 2 ћ;
Б) j = 5/2, 3/2; jz = ±5/2, ±3/2, ±1/2; L = ћ√ l(l +1) = √ 6 ћ

4.7. А) Частица с собственным моментом s = 3/2 находится в состоянии с орбитальным моментом
l = 2. Найти полный момент частицы j.
Б) Частица с собственным моментом s = 1/2 находится в состоянии с орбитальным моментом
l = 3. Определите полный момент частицы j
Ответ: А) j = 7/2 ÷ 1/2; Б) j = 7/2, 5/2

4.8. Протон и нейтрон находятся в состоянии с относительным орбитальным моментом L = 1. Найти полный момент системы J.
Ответ: J = 0, 1, 2

4.9. На оболочке с квантовым числом n = 1, l = 2 находятся протон и нейтрон. Определить их суммарный полный момент J и его проекцию Jz. Изменится ли результат, если на оболочке n = 1,
l = 2 будут находиться два нейтрона?

4.10. Почему возникают вырожденные состояния?

4.11. Написать оператор Гамильтона электронов в атоме He.

4.12. Напишите стационарное уравнение Шредингера в сферической системе координат.

4.13. Какие квантовые числа характеризуют частицу в центрально-симметричной потенциальной яме?

4.14. Покажите, что волновые функции ψ = Aexp(kx −ωt) и ψ = Asin(kx −ωt) не удовлетворяют зависящему от времени уравнению Шредингера.

4.15. Покажите, что волновые функции ψ = Ae i(kx −ωt) и ψ = A(cos(kx −ωt) − sin(kx −ωt))удовлетворяют зависящему от времени уравнению Шредингера.

4.16. Частица находится в низшем состоянии n = 1 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L.
А) Рассчитайте вероятность обнаружить частицу в интервале Δx = 0.001L при x = 1 /2L, x = 2 /3L, x = L.
Б) Рассмотрите случай, когда частица находится в состоянии n = 2 при тех же значениях x.
Ответ: А) P(L/2) = 0.002; P(2L/3) = 0.0015; P(L) = 0; Б) P(L/2) = 0; P(2L/3) = 0.0015; P(L) = 0

4.17. Частица находится в состоянии n = 2 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить частицу в интервале ( 1 /3L, 2 /3L).
Ответ: P(L/3, 2L/3) = 0.2

4.18. Электрон находится всостонии n = 5 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить электрон в области x от 0.2L до 0.5L.
Ответ: P(0.2L, 0.5L) = 0.3

4.19. Электрон находится в бесконечно глубокой одномерной потенциальной яме. Рассчитайте ширину потенциальной ямы, если энергия состояния n = 1 равна 0.1 эВ.
Ответ: L = 1.9 нм

4.20. Рассчитайте средние значения и 2 > для состояний n = 1, 2, 3 в бесконечно глубокой прямоугольной потенциальной яме.

4.21. Что общего и в чем различие в описании атома водорода в теории Шредингера и в модели Бора?

4.22. Почему энергии атома водорода в теории Шредингера не зависят от орбитального квантового числа l?

4.23. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?
Ответ: Lz = -3ћ, -2ћ. 3ћ; L 2 = 12ћ 2

4.24. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?

Операторы. Собственные функции и собственные значения.

АТОМНАЯ ФИЗИКА. ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ.

Глава 3. Элементы квантовой механики

Операторы. Собственные функции и собственные значения.

Операторы в квантовой механике.

Рассмотрим теперь еще одну возможную интерпретацию уравнений (в 4) и (в 5).

Когда волновая функция известна, соответствующий импульс частицы или его компоненту мы получаем, взяв частную производную от волновой функции по :

.

Принято говорить, что компоненте импульса отвечает дифференциальный оператор

.

Аналогичное утверждение справедливо и для и компонент.

Соответственно, оператор, отвечающий энергии, имеет вид

.

Операторы, или правила, по которым производятся действия над какими-либо функциями (действуя на одну функцию, они порождают другую), можно представлять различными способами. Матрицы Гейзенберга являются одним определенным способом представления операторов. Другим представлением служит набор дифференциальных коэффициентов (операций дифференцирования), соответствующих компонентам импульса и энергии.

В квантовой механике любой динамической переменной, любой физической величине приводится в соответствие оператор.

Т.о., оператор – это правило, по которому любой выбранной функции приводится в соответствие другая функция :

(3.1.1)

Операциям возведения в степень, однократного и многократного дифференцирования, умножения на некоторую функцию и т.д. можно сопоставить соответствующие операторы. Примерами операторов могут служить ранее встречавшиеся .

Оператор пишется всегда слева и действует на функцию, которая стоит справа от него.

Оператор действует на все, что стоит справа от него (если нет скобок).

В квантовой механике применяются линейные операторы, чтобы не нарушался принцип суперпозиции состояний. Свойство линейных операторов:

(1.2)

Примерами линейных операторов могут служить единичный оператор: , оператор умножения на число : .

Среди операторов, действующих на волновые функции , связанные (ассоциированные) с частицей, можно выделить два особенно важных типа линейных операторов:

1. операторы вида , действие которых состоит в умножении волновой функции на функцию

2. дифференциальные операторы .

Напротив, оператор, сопоставляющий некоторой функции её куб, не является линейным оператором.

Используя линейные операторы, можно получить другие линейные операторы с помощью алгебраических операций умножения оператора на постоянную величину, сложения операторов, умножения операторов.

1) оператор координаты – оператор умножения: ;

2) оператор проекции импульса – дифференциальный оператор: ;

3) оператор полной энергии – гамильтониан:

4) типичным примером линейного оператора, полученного путем умножения и суммирования линейных операторов, является оператор Лапласа:

.

Можно ввести и другие операторы, например, момента импульса, проекции момента импульса, спина и т.д.

Собственные функции и собственные значения.

Итак, каждой физической величине сопоставляется линейный оператор , который, действуя на волновую функцию , зависящую от координат , переводит её в другую функцию .

Если оператор воспроизводит функцию с точностью до множителя

,

то функцию называют собственной функцией оператора , а множитель собственным значением оператора .

Т.о., значения, которые может принимать физическая величина, называют в квантовой механике её собственными значениями, а об их совокупности говорят как о спектре собственных значений данной величины.

В классической механике величины пробегают, вообще говоря, непрерывный ряд значений.

В квантовой механике тоже существуют физические величины (примером могут служить координаты), собственные значения которых заполняют непрерывный ряд. В таком случае говорят о непрерывном спектре собственных значений.

Однако в квантовой механике, наряду с такими величинами, существуют и другие, собственные значения которых образуют дискретный набор. Это означает, что спектр собственных значений дискретный.

Т.о., спектр собственных значений может быть дискретным, сплошным (непрерывным) или смешанным.

Если спектр дискретный, то собственные значения и собственные функции можно пронумеровать

(1.)

где n — немой значок, соответствующий номеру решения.

Физический смысл: собственные значения описывают в квантовой механике такие состояния, в которых данная физическая величина имеет определенное значение .

  1. Оператор координаты .

.

Решение существует при всех , т.е. спектр собственных значений непрерывный.

  1. Оператор проекции импульса.

собственная функция оператора импульса.

Очевидно, что спектр собственных значений оператора импульса непрерывный, поскольку имеем решения при всех значениях .

  1. Оператор энергии – гамильтониан.

.

В зависимости от потенциальной функции система может иметь как дискретный спектр энергий (определенные уровни энергии), так и непрерывный.

Правила действия с операторами (алгебра операторов).

1. принцип суперпозиции.

;

2. свойство коммутативности

3. сложение операторов

;

4. умножение оператора на число эквивалентно умножению на это число результата действия оператора:

5. произведение линейных операторов обладает ассоциативным свойством:

;

и свойством дистрибутивности:

В отличие от суммы, произведение двух операторов не коммутативно.

В этом состоит очень важное различие между алгеброй линейных операторов и алгеброй чисел. Произведение не обязательно тождественно произведению . В первом случае сначала оператор действует на функцию , а затем оператор действует на функцию и дает окончательный результат.

Во втором случае операции и переставлены между собой.

Разность двух произведений операторов называется коммутатором операторов и .

Коммутатор обозначается символом

.

Если указанная разность равна нулю, говорят, что операторы коммутируют

,

Рассмотрим совместное действие операторов, вычислив их коммутаторы.

1. координаты и проекции импульса .

,

т.е. операторы и коммутируют.

Коммутируют между собой все операторы дифференцирования

2. координаты и проекции импульса .

,

т.е. операторы и не коммутируют.

физические величины, которым соответствуют некоммутирующие операторы, никогда не могут быть одновременно точно измерены – канонически сопряженные величины;

физические величины, чьи операторы коммутируют, могут быть одновременно точно измерены.


источники:

http://nuclphys.sinp.msu.ru/sem2/sem04.html

http://helpiks.org/4-59970.html