Собственные колебания системы описываются уравнением движения

Свободные колебания.

Свободные колебания (или собственные колебания) — это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинети­ческой) при отсутствии внешних воздействий.

Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними обра­зуют систему тел, которая называется колебательной системой.

Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины (см. рис. ниже), входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О) вследствие действия силы упругости пружины, направленной к положению равновесия.

Другим классическим примером механической колебательной системы является математический маятник (см. рис. ниже). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия.

Силы, действующие между телами колебательной системы, называются внутренними силами. Внешними силами называют­ся силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свобод­ные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.

Условиями возникновения свободных колебаний являются:

1) возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;

2) отсутствие трения в системе.

Динамика свободных колебаний.

Колебания тела под действием сил упругости. Уравнение колебательного движения тела под действием силы упругости F (см. рис.) может быть получено с учетом второго закона Ньютона (F = mа) и закона Гука (Fупр = -kx), где m — масса шарика, а — ускорение, приобретаемое шариком под действием силы упругости, k — коэффициент жесткости пружины, х — смещение тела от положения равновесия (оба уравнения записаны в проекции на горизонтальную ось Ох). Приравнивая правые части этих уравнений и учитывая, что ускорение а — это вторая производная от координаты х (смещения), получим:

.

Это дифференциальное уравнение движения тела, колеблющегося под действием силы упругости: вторая производная координаты по времени (ускорение тела) прямо пропорциональна его координате, взятой с противоположным знаком.

Колебания математического маятника. Для получения уравнения колебания математического маятника (рисунок) необходимо разложить силу тяжести FT = mg на нормальную Fn (направлен­ную вдоль нити) и тангенциальную Fτ (касательную к траектории движения шарика — окружности) составляющие. Нормальная составляющая силы тяжести Fn и сила упругости нити Fynp в сумме сооб­щают маятнику центростремительное ускорение, не влияющее на величину скорости, а лишь меня­ющее ее направление, а тангенциальная составляющая Fτ является той силой, которая возвращает шарик в положение равновесия и заставляет его совершать колебательные движения. Используя, как и в предыдущем случае, закон Ньютона для тангенциального ускорения maτ = Fτ и учитывая, что Fτ = -mg sinα, получим:

Знак минус появился потому, что сила и угол отклонения от положения равновесия α име­ют противоположные знаки. Для малых углов отклонения sin α ≈ α. В свою очередь, α = s/l, где s — дуга OA, I — длина нити. Учитывая, что аτ = s», окончательно получим:

.

Вид уравнения аналогичен уравнению . Только здесь параметрами системы являются длина нити и ускорение свободного падения, а не жесткость пружины и масса шарика; роль координаты играет длина дуги (т. е. пройденный путь, как и в первом случае).

Таким образом, свободные колебания описываются уравнениями одного вида (подчиняются одним и тем же законам) независимо от физической природы сил, вызывающих эти колебания.

Решением уравнений и является функция вида:

То есть координата тела, совершающего свободные колебания, меняется с течением времени по закону косинуса или синуса, и, следовательно, эти колебания являются гармоническими:

В уравнении x = xm cos ω0 t (или x = xm sin ω0 t), хm — амплитуда колебания, ω0 — собственная циклическая (круговая) частота колебаний.

Циклическая частота и период свободных гармонических колебаний определяются свойствами системы. Так, для колебаний тела, прикрепленного к пружине, справедливы соотношения:

.

Собственная частота тем больше, чем больше жесткость пружины или меньше масса груза, что вполне подтверждается опытом.

Для математического маятника выполняются равенства:

.

Эта формула была впервые получена и проверена на опыте голландским ученым Гюйгенсом (современником Ньютона).

Период колебаний возрастает с увеличением длины маятника и не зависит от его массы.

Следует особо обратить внимание на то, что гармонические колебания являются строго периодическими (т. к. подчиняются закону синуса или косинуса) и даже для математического маятни­ка, являющегося идеализацией реального (физического) маятника, возможны только при малых углах колебания. Если углы отклонения велики, смещение груза не будет пропорционально углу отклонения (синусу угла) и ускорение не будет пропорционально смещению.

Скорость и ускорение тела, совершающего свободные колебания, также будут совершать гармонические колебания. Беря производную по времени функции (x = xm cos ω0 t (или x = xm sin ω0 t)), получим выражение для скорости:

где am = ω 2 0 xm — амплитуда ускорения. Таким образом, амплитуда скорости гармонических коле­баний пропорциональна частоте, а амплитуда ускорения — квадрату частоты колебания.

Уравнение частоты собственных колебаний механической системы.

Любая техническая система в процессе своей эксплуатации подвержена воздействию внешних силовых факторов, которое определяется как входной сигнал. Результатом взаимодействия входного сигнала с технической системой является выходной сигнал. Следовательно, задача исследования технической системы состоит в ответе на вопрос: как входной сигнал преобразуется в выходной сигнал? То есть, возникает необходимость оценки количественных характеристик системы и возможности преобразования входного сигнала.

Исследование состояния системы необходимо начать с представления ее некой расчетной схемой и составления на основе учета действующих на систему сил уравнения ее движения.

В общем случае уравнение движения системы представляет собой дифференциальное уравнение в частных производных второго порядка по времени и четвертого порядка по пространственным координатам относительно функции перемещения точек системы. Исторически одним из первых методов, нашедших широкое применение при решении краевых задач для уравнений с частными производными, является метод разделения переменных, или метод Фурье, заключающийся в построении набора частных решений, каждое из которых разыскивается в виде произведения функций меньшего числа переменных (как правило, одного переменного). В ряде случаев оказывается, что такое представление не вступает в противоречие с исходным дифференциальным уравнением (тогда говорят, что уравнение допускает разделение переменных) и приводит в зависимости от размерности задачи к нескольким дифференциальным уравнениям, содержащим один и тот же числовой параметр. В зависимости от характера области, в которой решается краевая задача, граничных и начальных условий представляется возможным определить дискретные значения (иногда сплошной спектр) этих параметров, что приводит к совокупности частных решений, суммируя которые находят достаточно общее представление решения. Неизвестные коэффициенты (дискретные значения или некоторые функции) определяются уже на заключительном этапе при удовлетворении краевых условий.

В самом общем случае решение дифференциального уравнения движения системы может быть представлено в виде

;(19)

где — перемещение точек системы;

x — радиус-вектор точки системы;

Функция времени T(t) (индекс i опущен) определяется из обыкновенного дифференциального уравнения относительно времени t, и получаемого из общего уравнения движения после разделения переменных. В общем случае уравнение для определения T(t) имеет вид для случая постоянных коэффициентов:

(20)

для случая переменных коэффициентов:

(21)

В (20) и (21) М0, М — соответственно постоянная и переменная матрицы масс; К0, К — соответственно постоянная и переменная матрицы жесткости; Q0, Q — соответственно постоянная и переменная матрицы, иногда называемые матрицей демпфирования, что верно лишь для частных случаев. В общем случае реальная механическая система представляет собой сложную комбинацию одномассовых и многомассовых систем и систем распределенными параметрами. Поэтому коэффициентами в уравнениях (20) и (21) в общем случае являются матрицы.

Из (20) следует, что характеристиками описываемого данным уравнением механического процесса являются спектр собственных чаете (собственных значений) и соответствующие им функции форм (собственные функции) Хi(х). Характеристиками же описываемого уравнением (21) механического процесса являются спектр критических частот изменения параметра и область динамической неустойчивости. При этом спектр критических частот строится на основе спектра собственных частот уравнения с постоянными коэффициентами.

Спектр критических частот, область динамической неустойчивости и анализ уравнения с переменными коэффициентами является самостоятельной задачей, выходящей за рамки данного курса. Поэтому для первого знакомства с основами технической диагностики ограничимся только анализом собственных и вынужденных колебаний систем, уравнения движения которых описываются уравнениями с постоянными коэффициентами, а функция времени в решении (19) находится из уравнения (20).

Уравнение (20) может быть представлено в виде

,(22)

где

Решение уравнения (22) зависит от соотношения между его коэффициентами. При

решение будет иметь вид

,(23)

где — собственная частота.

решение имеет вид

,(24)

где — собственная частота.

При решение имеет вид

,(25)

Функция времени (25) представляет собой суперпозицию двух монотонных процессов, численно выраженных экспонентой и линейной функцией времени. То есть, функция (25) не описывает процесса гармонических колебаний системы и поэтому не будет рассматриваться в рамках нашего курса.

Процессы, характеризуемые функцией времени (24), не являются характерными для рассматриваемой нами области техники. Поэтому в рамках нашего курса ограничимся рассмотрением процессов, характеризуемых функцией времени (23).

Согласно (23) функция времени зависит от угловой собственной частоты w, это означает, что частоты собственных колебаний системы, а следовательно, в более общем случае спектр собственных частот системы являются численными характеристиками, количественно отражающими состояние системы. В свою очередь, значение частоты зависит от массы, демпфирования и жесткости механической системы. Изменение любого параметра системы, количественно влияющего на эти матрицы, ведет к изменению частоты собственных колебаний, а следовательно, и к изменению функции времени.

Но влияние частоты не ограничивается только функцией времени. Покажем, что выражение каждой из функций формы в (19) зависит от соответствующего ей значения собственной частоты.

Дата добавления: 2018-09-24 ; просмотров: 1092 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Как определить собственную частоту колебаний

Вы будете перенаправлены на Автор24

Собственные колебания

Собственные или свободные колебания – это колебания, происходящие в системе при отсутствии переменных внешних воздействий. Такие колебания возникают по причине начального отклонения одного из параметров от состояния равновесия.

В целом колебания представляют собой повторяющийся во времени процесс изменения состояния системы около точки равновесия (при колебании маятника все углы его отклонения от вертикали повторяются с определенной периодичностью.

В реальных макроскопических системах собственные колебания затухают по причине потерь энергии. Любой колебательный процесс связан с переходом энергии из одной формы в другую.

Следует заметить, что колебания различной физической природы имеют ряд общих закономерностей и тесно связаны с волнами. В этой связи исследованием таких закономерностей занимается теория колебаний и волн. Принципиальное отличие колебаний от волн заключается в том, что распространение последних сопровождается переносом, а не переходом энергии.

По характеру взаимодействия с окружающей средой колебания разделяют на:

  • вынужденные;
  • автоколебания;
  • параметрические;
  • собственные.

В настоящей статье речь пойдет о собственных колебаниях, т.е. о колебаниях системы под действием внутренних сил после выведения системы из равновесия.

При небольших отклонениях от состояния равновесия движение любой системы будет удовлетворять принципу суперпозиции. Согласно данному принципу сумма произвольных движений составляет допустимое движение системы. Подобные движения описываются линейными (дифференциальными) уравнениями.

В случае, если в системе нет потерь энергии (она консервативна), а ее параметры не изменяются во времени, то любое собственное колебание может быть представлено, как совокупность нормальных колебаний, изменяющихся во времени по закону синуса с определенными частотами собственных колебаний.

Если положение системы в любой момент времени описывается единственным параметром, то такая система имеет одну степень свободы. Идеальным примером такой системы является маятник, колеблющийся в плоскости. И действительно, положение маятника в любой момент может определяться лишь углом его отклонения от вертикали.

Готовые работы на аналогичную тему

В природе существует большое количество весьма интересных систем, имеющих две степени свободы. Например, молекулы и элементарные частицы (наиболее примечательны нейтральные К-мезоны). Более простым и понятным примером является двойной маятник (один маятник подвешивается к опоре, второй – к гире первого маятника; два маятника, объединенные пружиной).

Чтобы описать состояние системы с двумя степенями свободы необходимо уже две переменные. Например, в случае со сферическим маятником роль таких переменных будут выполнять положения маятника в двух взаимно перпендикулярных плоскостях. В случае объединенных маятников эти переменные соответствуют положению каждого из маятников.

В общем виде движение системы, имеющей две степени свободы, может иметь весьма сложный вид, не напоминающий простое гармоническое движение.

Для двух степеней свободы, а также при линейных уравнениях движения общий вид движения представляет собой суперпозицию двух простейших гармонических зависимостей, происходящих в один момент. Эти два элементарных движения называют нормальными (собственными) колебаниями или гармониками.

Колебательные системы с сосредоточенными параметрами, состоящими из N связанных осцилляторов (например, цепочка из связанных между собой пружинками шариков), число гармоник будет равно N. В системах с распределенными параметрами (мембрана или резонатор) таких колебаний существует бесчисленное множество. Например, для закрепленной струны длиной L гармоники будут отличаться количеством полуволн, которые возможно уложить по всей длине струны. Если скорость распространения волн струны равна v, то спектр собственных частот определяется по формуле:

Рисунок 1. Формула 1. Автор24 — интернет-биржа студенческих работ

Наличие дисперсии волн искажает данное простое распределение частот, спектр которых определяется уже из дисперсионных уравнений.

Что касается реальных систем, то в них собственные колебания затухают из-за потерь энергии, поэтому их следует считать лишь приближенно гармоническими в интервале времени, меньшем $1/δ$. Затухающие колебания могут быть представлены в виде нескольких гармонических колебаний, непрерывно заполняющих определенный интервал частот, тем меньшим, чем меньше $δ$. В таком случае следует говорить о расширении спектральной линии, характеризуемой добротностью $Q$ и равной отношению запасенной энергии $W$ к потерям $P$. Отсюда следует, что отношение сгущение спектра из-за потерь энергии может повлечь за собой превращение дискретного спектра в сплошной при приближении ширины линий к интервалу между ними.

Колебания в нелинейных системах

Собственные колебания нелинейных систем не поддаются простой классификации. Нелинейность систем с дискретным спектром частот собственных колебаний приводят к переходу энергии по спектральным компонентам. При этом возникает явление конкуренции гармоник – выживание одних и подавление других.

Подобный процесс может стабилизировать дисперсия. Она может привести к появлению устойчивых пространственно-временных образований (например, солитоны).

Большое значение при возбуждении колебаний может иметь явление резонанса, которое заключается в резком увеличении амплитуды колебаний (отклика). Данное явление наблюдается при приближении частоты внешних воздействий на систему к некоторой резонансной частоте, которая характеризует настоящую систему.

Если система линейна и ее параметры находятся вне зависимости от времени, то резонансные частоты совпадают с частотой собственных ее колебаний. Отклик системы в данном случае будет усиливаться с увеличением добротности колебательной системы $Q$.

Раскачка будет происходить до тех пор, пока энергия, поступающая извне (например, полученная при отклонении маятника от положения равновесия) будет превышать потери за время осцилляции. Что касается линейных колебаний, то энергия, вносимая извне будет пропорциональна амплитуде, а потери будут расти пропорционально ее квадрату. Отсюда следует, что баланс энергии достижим во всех случаях.


источники:

http://helpiks.org/9-51133.html

http://spravochnick.ru/arhitektura_i_stroitelstvo/kak_opredelit_sobstvennuyu_chastotu_kolebaniy/