Согласно уравнению нернста потенциал электрода не зависит от

Факторы, влияющие на величину электродного потенциала

Электродный равновесный потенциал зависит от следующих основных факторов.

От природы металла. Чем большей химической активностью обладает данный металл, тем в большей степени равновесие (4.1) смещено вправо, тем отрицательнее потенциал.

От концентрации ионов металла в растворе.Переход ионов металла в раствор происходит тем интенсивнее, чем меньше концентрация катионов в растворе. Наоборот, с увеличением концентрации раствора равновесие (4.1) смещается влево и потенциал становится более положительным.

От температуры. С повышением температуры потенциал становится более положительным, т.е. равновесие (4.1) смещается влево.

Зависимость величины потенциала от указанных факторов выражается уравнением Нернста:

, (4.2)

где — электродный потенциал металла (Ме) в растворе, содержащем катионы ; — стандартный или нормальный потенциал рассматриваемой системы; R – универсальная газовая постоянная; Т — температура по шкале Кельвина; n – число электронов, участвующих в электродном процессе; F — число Фарадея; а — активность ионов металла в растворе. Для разбавленных растворов коэффициент активности близок к единице и вместо активности можно пользоваться концентрацией ионов в растворе.

Если в уравнение (4.2) подставить значения постоянных R, F, принять температуру для стандартных условий (Т 0 = 298К) и перейти от натуральных к десятичным логарифмам, получим:

(4.3)

Из уравнения (4.3) следует, что стандартный электродный потенциал (E 0 ) – это потенциал электрода при стандартных условиях: , Т=298 К.

Величина (Е 0 ) характеризует химическую активность металла.

4.4. Типы электродов

В зависимости от свойств веществ, участвующих в электродных процессах, все электроды можно разделить на несколько типов.

Электроды первого рода. К этому типу относятся все металлические электроды в водородный электрод. Условное обозначение таких электродов: Ме|Ме n + , например Cu|Cu 2+ , водородный: (Pt)H2|H + . Вертикальная черта символизирует поверхность раздела фаз. Общим для этих электродов является то, что в равновесии на электроде участвуют нейтральные атомы (или молекулы) и один вид катионов. Такие электроды являются обратимыми относительно катионов.

Электроды второго рода.Такие электроды состоят из трех фаз: металл покрыт слоем труднорастворимой соли этого металла, а в растворе, куда он опущен, находятся те же анионы, которые входят в состав труднорастворимой соли.

Например, хлорсеребряный электрод: Ag, AgCl|KCl; каломельный электрод: Hg, Hg2Cl2|KCl.

Между твердой фазой и раствором на этих электродах возникают следующие равновесия:

Ag + Cl − − ē D AgCl

В отличие от электродов первого рода здесь в равновесии участвуют анионы, т.е. электроды второго рода обратимы относительно анионов. Величина потенциала этих электродов зависит от концентрации анионов:

Эти электроды в лабораторной практике обычно используют в качестве электродов сравнения.

Окислительно-восстановительные электроды. Эти электроды представляют собой пластинку из благородного металла (чаще всего платины), погруженную в раствор, содержащий ионы одного элемента в разной степени окисления. Например, Pt|Fe 3+ , Fe 2+ ; Pt|Sn 4+ , Sn 2+ .

На поверхности платины происходит обмен электронами между ионами и устанавливаются равновесия:

Sn 2+ − 2ē D Sn 4+

Платина в этих равновесиях не участвует и играет роль переносчика электронов. Величина потенциала может быть рассчитана по уравнению Нернста:

, (4.4)

где — стандартный окислительно-восстановительный потенциал; n – число электронов, участвующих в электродной реакции (для данной системы n=2); Сок., Свосст. – концентрация ионов в высшей и низшей степени окисления соответственно.

Величина стандартного окислительно-восстановительного потенциала характеризует свойства окислителей и восстановителей, а именно:

чем выше Е 0 , тем более сильным окислителем являются ионы в высшей степени окисления;

Дата добавления: 2015-09-28 ; просмотров: 12292 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Применение уравнения Нернста в решении задач.

При рассмотрении вопроса об окислительно-восстановительных реакциях часто возникает необходимость расчета электродвижущей силы (ЭДС) и потенциалов отдельных полуреакций. В справочниках обычно приведены таблицы т.н. стандартных потенциалов тех или иных процессов, рассчитанных при р=1 атм, Т=298К и активностях участников равных 1. Однако в реальных задачах условия могут значительно отличаться от указанных выше. Как быть в таком случае? Ответ дает уравнение Нернста. В оригинальном виде оно выглядит так:









Как можно заметить, в уравнении фигурируют несколько постоянных величин. Также температура в подавляющем большинстве случаев равна 298К. Кроме того, можно заменить натуральный логарифм на десятичный. Это можно сделать путем умножения на коэффициент перевода. Если собрать все постоянные в единый множитель, то приходим к несколько иному, но более знакомому по учебным пособиям виду уравнения Нернста:

Такой вариант уравнения сильно облегчает жизнь в ряде случаев, например рассмотрении рН-зависимых процессов. Используя данное уравнение можно провести вычисления в любых условиях, приведенных в задаче. Рассмотрим характерные примеры задания по данной теме.

Пример 1:

Рассчитать ЭДС гальванического элемента, составленного из медной и цинковой пластин, погруженных в растворы 0.1М CuSO4 и 0.01М ZnSO4 соответственно. Коэффициенты активности ионов Cu 2+ и Zn 2+ принять равными единице.

Решение:

Для начала запишем уравнения протекающих процессов:


Далее находим по таблице стандартные потенциалы процессов:

Если в условиях задачи ничего не сказано про коэффициенты активности ионов, то можно считать их равными единице, как и в нашем случае. Тогда активности участников процессов можно принять равными их аналитическим концентрациям.

Найдем реальные потенциалы с учетом нестандартных активностей ионов:

Далее необходимо сравнить полученные величины между собой, чтобы определить, кто из участников процесса – окислитель. Потенциал меди больше, чем у цинка, поэтому она будет окислителем. Тогда найдем ЭДС системы:

Ответ: 1.13 В

Пример 2:

Одним из лабораторных способов получения хлора является действие KMnO4 на концентрированную соляную кислоту. Можно ли провести процесс при рН=4?

Решение:

Для начала запишем уравнения протекающих процессов.

Далее находим по таблице стандартные потенциалы процессов:

Несложно заметить, что от рН в данном случае зависит только потенциал перманганата. Тогда воспользуемся уравнением Нернста и рассчитаем его реальный потенциал в условиях задачи:

Получается, что потенциал KMnO4 стал меньше, чем у хлора, а значит, реакция не пойдет.

Согласно уравнению нернста потенциал электрода не зависит от

webkonspect.com — сайт, с элементами социальной сети, создан в помощь студентам в их непростой учебной жизни.

Здесь вы сможете создать свой конспект который поможет вам в учёбе.

Чем может быть полезен webkonspect.com:

  • простота создания и редактирования конспекта (200 вопросов в 3 клика).
  • просмотр конспекта без выхода в интернет.
  • удобный текстовый редактор позволит Вам форматировать текст, рисовать таблицы, вставлять математические формулы и фотографии.
  • конструирование одного конспекта совместно с другом, одногрупником.
  • webkonspect.com — надёжное место для хранения небольших файлов.


источники:

http://scienceforyou.ru/jelektrohimija/uravnenie-nernsta

http://webkonspect.com/?room=profile&id=8005&labelid=85742