Составить модель решения квадратного уравнения

Расположение корней квадратного уравнения относительно заданных точек

Разделы: Математика

“Будущий математик, как и всякий человек учится при помощи практики и подражания… .Ему следует решать задачи, выбирая те, которые соответствуют его интересам, размышлять над их решением и изобретать новые задачи.”
Дьердь Пойа

  • Повторить свойства графика квадратичной функции у = aх² + bх + с, а ≠ 0;
  • Повторить теорему Виета для корней квадратного уравнения ах² + bх + с = 0;
  • Рассмотреть алгоритм решения квадратного уравнения с параметром в котором поставлено условие для корней х1 и х2;
  • Применять алгоритм для решения уравнений с параметром с поставленными условиями;
  • Воспитывать чувство ответственности перед товарищами и умение работать в группах
  • Развивать логическое мышление.

1. Организационный момент.
2. Актуализация знаний учащихся:

  • Повторение свойств графика квадратичной функции
  • Повторение Теоремы Виета.

3. Изучение нового материала. Работа в группах:
Исследовательская работа. Отчет о проделанной работе.
4. Закрепление изученного материала.
5. Домашнее задание.
6. Итог занятия.

Оборудование: Мультимедийное оборудование, презентация, (Приложение 1)

1. Организационный момент

Рассмотреть рисунки. Что общего на всех эти картинах? Что просматривается на этих картинах? (Слайд 3, 4 ,5)

2. Актуализация знаний учащихся.

Парабола…
Что такое парабола?
Как может располагаться парабола в системе координат? Отчего это зависит? (Слайд 6, 7)

3. Изучение нового материала.

Нас сегодня будет интересовать случай, когда парабола пересекает ось абсцисс в двух точках, т.е. квадратное уравнение ах²+bх+с=0 имеет два корня.
Возьмем на оси абсцисс произвольную точку М. Давайте рассмотрим все случаи расположения точки М и корней квадратного уравнения х1 и х2.

Исследовательская работа в группах: (Слайд 8, 9, 10, 11)

А вы, ребята, должны провести исследовательскую работу.

(Работа в группах.)

Задания даны на ваших инструкционных картах вместе с графиком.
Работаем 6–8 минут. А затем готовим выступление по своей работе.
Выводы записываем в заранее заготовленную таблицу на доске (или через компьютерную презентацию).

Вместе вырабатываем (план) Алгоритм решения квадратного уравнения с параметром относительно заданных точек.

Алгоритм решения. (Cлайд 12)

  • Постановка проблемы.
  • Путь решения.
  • Составить математическую модель. (Ввести функцию.)
  • Найти решение.
  • Записать ответ.

5. Закрепление изученного материала. (Слайд 13)

При каких значениях а оба корня уравнения х² – ах + 2 = 0 лежат в промежутке (0; 3)

1. Проблема поставлена условием задачи.
2. Воспользуемся первым способом решения:

3. Составим модель решения квадратного уравнения с параметром.

D = b ² – 4 ac
a
² – 4•1 •2 > 0

лежат в промежутке (-1; 5)Ответ:

Самостоятельно в тетрадях:

При каких значениях а оба корня

лежат в промежутке (-1; 2)

6. Домашнее задание.

1) х 2 – ах + 2 = 0 лежат в промежутке (1; 3) Ответ: [2√2; 3)

2) 4х 2 – 2х + а = 0 лежат в промежутке (-1; 1) Ответ: (-2; 0,25]

7. Итог занятия. (Слайд 14)

“Считать несчастным тот день или тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию”
Ян Амос Каминский

– Что нового узнали?
– Чему научились?

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    КВАДРАТНОЕ УРАВНЕНИЕ КАК МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ТЕКСТОВОЙ ЗАДАЧИ

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    У р о к 1 (50)
    Квадратное уравнение как математическая
    модель текстовой задачи

    Цели: ввести понятие «математическая модель», выделить этапы решения задач алгебраическим методом; формировать умение составлять квадратное уравнение по условию задачи и решать его.

    I. Организационный момент.

    II. Устная работа.

    – Найдите сторону квадрата, если его площадь равна:

    а) 81 см 2 ; б) 0,49 дм 2 ; в) м 2 ;

    г) м 2 ; д) 225 см 2 ; е) м 2 .

    III. Проверочная работа.

    В а р и а н т 1

    1. Сколько корней имеет уравнение? Поясните ответ.

    а) 3 х 2 – 7 х = 0; в) 2 х 2 – 1 = 0;

    б) х 2 – 2 х + 1 = 0; г) х 2 + 3 х + 3 = 0.

    2. Решите уравнение:

    а) 5 х 2 + 14 х – 3 = 0; в) 7 х 2 + 8 х + 1 = 0;

    б) х 2 – 2 х + 2 = 0; г) х – 3 х 2 – 2 = 0.

    В а р и а н т 2

    1. Сколько корней имеет уравнение? Поясните ответ.

    а) 6 х 2 – 5 х = 0; в) 3 х 2 – 4 = 0;

    б) х 2 – 4 х + 4 = 0; г) х 2 – 4 х + 5 = 0.

    2. Решите уравнение:

    а) 5 х 2 + 8 х – 4 = 0; в) 7 х 2 + 6 х – 1 = 0;

    б) х 2 – 6 х + 11 = 0; г) 4 х – 3 х 2 – 2 = 0.

    IV. Развивающее задание.

    – Составьте квадратное уравнение, корни которого равны:

    а) 1 и 3; б) и – ; в) 1 – ; 1 + .

    V. Объяснение нового материала.

    Объяснение следует начать с решения конкретной (с. 124 учебника) задачи. В процессе её решения учащиеся открывают н о в ы й ф а к т: корень уравнения, составленного по условию задачи, может не удовлетворять этому условию. В то же время полученные при решении квадратного уравнения два различных корня могут одновременно отвечать условию задачи. Поэтому возникает необходимость интерпретации полученного решения.

    Важно, чтобы учащиеся осознали значимость новой ситуации и вместе с учителем чётко выделили этапы решения задачи алгебраическим методом:

    1. Анализ условия задачи и его схематическая запись.

    2. Перевод естественной ситуации на математический язык (построение математической модели текстовой задачи).

    3. Решение уравнения, полученного при построении математической модели.

    4. Интерпретация полученного решения.

    Четвёртый этап решения задачи алгебраическим методом является принципиально новым для учащихся, поэтому на нём следует заострить внимание. Можно попросить учащихся привести примеры ситуаций, когда полученный корень уравнения может противоречить условию задачи.

    В процессе обсуждения этого вопроса можно выделить несколько самых распространённых ситуаций:

    1) Корень уравнения является отрицательным числом, когда за неизвестное принята какая-то мера, которая может выражаться только положительным числом (н а п р и м е р, длина, площадь, объём и т. п.).

    2) Корень уравнения является числом из более широкого множества, чем то, которое описывается в задаче (н а п р и м е р, получено дробное число, когда в условии задачи речь идет о целых числах).

    3) Несоответствие полученных положительных размеров с реальными (н а п р и м е р, скорость пешехода равна 80 км/ч и т. п.).

    При решении задач учащиеся могут в процессе интерпретации полученных решений соотносить ситуации с тремя выделенными.

    VI. Формирование умений и навыков.

    Пусть х см – длина одного катета прямоугольного треугольника, тогда (23 – х ) см – длина второго катета. Зная, что площадь прямоугольного треугольника равна половине произведения катетов и составляет 60 см 2 , составим уравнение:

    · х · (23 – х ) = 60;

    23 хх 2 – 120 = 0;

    х 2 – 23 х + 120 = 0;

    D = (–23) 2 – 4 · 1 · 120 = 529 – 480 = 49; D > 0; 2 корня.

    x 1 = = 15;

    x 2 = = 8.

    Оба корня удовлетворяют условию задачи.

    В задаче встречается понятие «последовательные натуральные числа». Нужно убедиться, что учащиеся понимают, о чём идёт речь.

    Пусть х см – ширина листа картона, тогда длина оставшейся части картона равна (26 – 2 х ) см, а её площадь равна х (26 – 2 х ) см 2 . Зная, что площадь оставшейся части картона равна 80 см 2 , составим уравнение:

    26 х – 2 х 2 – 80 = 0;

    D = (–13) 2 – 4 · 1 · 40 = 169 – 160 = 9; D > 0; 2 корня.

    x 1 = = 8;

    x 2 = = 5.

    И н т е р п р е т а ц и я (чертёж в масштабе 1 : 2).

    1-е р е ш е н и е:

    2-е р е ш е н и е:

    О т в е т: 5 см; 8 см.

    5. № 568 (самостоятельное решение).

    Пусть х – число рядов в кинотеатре, тогда ( х + 8) – число мест в ряду. Количество мест в кинотеатре равно х · ( х + 8). Зная, что всего в кинотеатре 884 места, составим уравнение:

    D 1 = 4 2 – 1 · (–884) = 16 + 884 = 900; D 1 > 0; 2 корня.

    x 1 = –4 + = –4 + 30 = 26;

    x 2 = –4 – = –4 – 30 = –34 – не удовлетворяет условию задачи.

    О т в е т: 26 рядов.

    VII. Итоги урока.

    В о п р о с ы у ч а щ и м с я:

    – Что понимается под математической моделью текстовой задачи?

    – Какие этапы решения задачи алгебраическим методом выделяют?

    – В чём состоит интерпретация полученного решения задачи?

    – Приведите примеры, когда полученное решение противоречит условию задачи.

    Домашнее задание: № 560, № 562, № 565, № 567.


    источники:

    http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya

    http://infourok.ru/kvadratnoe-uravnenie-kak-matematicheskaya-model-tekstovoy-zadachi-3021757.html