Составить полное и сокращенное уравнение 9 класс

Как составлять ионные уравнения. Задача 31 на ЕГЭ по химии

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации — вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O + ) и анионы хлора (Cl — ). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br — (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая «обычные» (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl — . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl — + Na + + OH — = Na + + Cl — + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо «виртуальных» молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы — катионы Na + и анионы Cl — . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH — = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH — c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку — 2 балла.

Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O — молекулярное уравнение («обычное» уравнения, схематично отражающее суть реакции);
  • H + + Cl — + Na + + OH — = Na + + Cl — + H 2 O — полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH — = H 2 O — краткое ионное уравнение (мы убрали весь «мусор» — частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений


  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем «в виде молекул».
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ — краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия — это две соли. Заглянем в раздел справочника «Свойства неорганических соединений». Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

BaCl 2 + Na 2 SO 4 = BaSO 4 &#x2193 + 2NaCl.

Таблица растворимости подсказывает нам, что BaSO 4 действительно не растворяется в воде (направленная вниз стрелка, напомню, символизирует, что данное вещество выпадает в осадок). Молекулярное уравнение готово, переходим к составлению полного ионного уравнения. Обе соли, присутствующие в левой части, записываем в ионной форме, а вот в правой части оставляем BaSO 4 в «молекулярной форме» (о причинах этого — чуть позже!) Получаем следующее:

Ba 2+ + 2Cl — + 2Na + + SO 4 2- = BaSO 4 &#x2193 + 2Cl — + 2Na + .

Осталось избавиться от балласта: убираем ионы-наблюдатели. В данном случае в процессе не участвуют катионы Na + и анионы Cl — . Стираем их и получаем краткое ионное уравнение:

Ba 2+ + SO 4 2- = BaSO 4 &#x2193.

А теперь поговорим подробнее о каждом шаге нашего алгоритма и разберем еще несколько примеров.

Как составить молекулярное уравнение реакции

Должен сразу вас разочаровать. В этом пункте не будет однозначных рецептов. Действительно, вряд ли можно рассчитывать, что я смогу разобрать здесь ВСЕ возможные уравнения реакций, которые могут встретиться вам на ЕГЭ или ОГЭ по химии.

Ваш помощник — раздел «Свойства неорганических соединений». Если вы хорошо знакомы с четырьмя базовыми классами неорганических веществ (оксиды, основания, кислоты, соли), если вам известны химические свойства этих классов и методы их получения, можете на 95% быть уверены в том, что у вас не будет проблем на экзамене с написанием молекулярных уравнений.

Оставшиеся 5% — это некоторые «специфические» реакции, которые мы не сможем перечислить. Не будем лить слез по поводу этих 5%, а вспомним лучше номенклатуру и химические свойства базовых классов неорганических веществ. Три задания для самостоятельной работы:

Упражнение 1 . Напишите молекулярные формулы следующих веществ: оксид фосфора (V), нитрат цезия, сульфат хрома (III), бромоводородная кислота, карбонат аммония, гидроксид свинца (II), фосфат стронция, кремниевая кислота. Если при выполнении задания у вас возникнут проблемы, обратитесь к разделу справочника «Названия кислот и солей».

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3 ) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме «Химические свойства основных классов неорганических соединений».

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие — оставить в «молекулярной форме». Придется запомнить следующее.

В виде ионов записывают:


  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , . ).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин «все остальные вещества», и которые, следуя примеру героя известного фильма, требуют «огласить полный список» даю следующую информацию.

В виде молекул записывают:


  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты . );
  • вообще, все слабые электролиты (включая воду. );
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение — растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) — нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие — в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) — нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl — сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 — растворимая соль. Записываем в ионной форме. Вода — только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl — = Cu 2+ + 2Cl — + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода — типичный кислотный оксид, NaOH — щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 — оксид, газообразное соединение; сохраняем молекулярную форму. NaOH — сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 — растворимая соль; пишем в виде ионов. Вода — слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH — = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка — это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS&#x2193 + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl — = ZnS&#x2193 + 2Na + + 2Cl — .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3 ) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

В следующей части статьи мы научимся составлять краткие ионные уравнения и разберем большое количество примеров. Кроме того, мы обсудим специфические особенности задания 31, которое вам предстоит решать на ЕГЭ по химии.

Виды уравнений и способы их решения в 9-м классе

Разделы: Математика

Перед уроком были изучены темы “Уравнения с одной переменной”, “Целые рациональные уравнения и основные методы решения целых рациональных уравнений”, “Дробно-рациональные уравнения”, “Уравнения с модулем и параметрами”.

За две недели до обобщающего урока на стенде “Готовься к экзамену” было предложено:

  1. Прорешать из экзаменационного сборника задания второго раздела (№ 71–101).
  2. Вопросы по теоретическому материалу.
  3. Примерное оформление экзаменационного задания.
  4. Сроки индивидуальных и групповых консультаций.

Вопросы по теоретическому материалу

  1. Определение уравнения с одним неизменным.
  2. Корень уравнения.
  3. Что значит решить уравнение?
  4. Определение области допустимых значений.
  5. Когда два уравнения являются равносильными?
  6. Когда одно уравнение является следствием другого?
  7. Какие тождественные преобразования приводят к равносильным уравнениям?
  8. Особенность тождественного преобразования “деление на выражение, содержащее переменную”.
  9. Виды уравнений, их стандартный вид, алгоритм решения.
  10. Основные методы решения уравнений с одним неизвестным.

а) учебник А-9 под ред. Н.Я. Виленкина, глава X, с. 157–189;
б) конспекты.

№ 93(1)
№ 5.60(а)
Галицкий, с. 51

если D = 0, то x = –3 при a = –3, но x = –3 не удовлетворяет условию, так как (x – 4)(x + 3) 0;

Среди найденных значений может быть появление посторонних корней, так как уравнение x² + (3 – a)x – 3a = 0 следствие исходного уравнения.

Чтобы x2 = a являлся корнем x 2 – 4 0, a – 4 0, a 4

x 2 + 3 0, то есть a – 3 0, a –3

Ответ: при a 4, a –3 корнем уравнения является x = a.

Задания к уроку подобраны с учетом подготовленности учащихся данного класса.

  • привести в систему знаний учащихся по теме;
  • повторить теорию решения уравнений;
  • выработать умение определить вид уравнения;
  • выразить наиболее рациональный способ решения данного уравнения;
  • формировать наблюдательность учащихся.

I. Организационный момент

Сообщение темы урока и его целей.

II. Повторение теории по решению уравнений

1. Что называется уравнением?

Ответ: Любое равенство вида некоторые функции называются уравнением с одной переменной (или с одной неизвестной).

2. Что называется корнем уравнения?

Ответ: Число a называется корнем (или решением) данного уравнения с одной переменной, если при подстановке числа a вместо x в обе части уравнения, получаем верное числовое неравенство, то есть при подстановке x = a обе части уравнения определены и их значения совпадают:

3. Что значит решить уравнение?

Ответ: Решить уравнение – это значит найти все его корни или доказать что их нет.

4. Как определяется область определения допустимых значений уравнения?

Ответ: ОДЗ называется пересечение множеств областей определения функций

5. Какие уравнения называются равносильными (эквивалентными)?

Ответ: Два уравнения называются равносильными, если все корни уравнения первого являются корнями второго и наоборот, все корни второго уравнения являются корнями первого.

6. А как определить уравнение следствие?

Ответ: Если все корни одного уравнения являются корнями второго уравнения, то второе уравнение называется следствием первого уравнения.

7. Какие тождественные преобразования приводят к равносильным уравнениям?

  • к обеим частям уравнения прибавить любую функцию, которая определена при всех значениях из ОДЗ. Следствие. Члены уравнения можно переносить из одной части уравнения в другую;
  • обе части уравнения умножить на любую функцию, определенную и отличную от нуля при всех допустимых значениях неизвестного. Также можно делить и умножать на число, отличное от нуля;
  • в обеих частях уравнения стоят функции, принимающие только неотрицательные значения, то при возведении в одну и ту же четную степень получаем уравнение, равносильное данному. Появлению “посторонних корней” приводят преобразования:
    а) приведение подобных членов – происходит расширение ОДЗ;
    б) сокращение дроби на выражение, содержащие неизвестное (тоже происходит расширение ОДЗ);
    в) умножение на выражение, содержащее неизвестное;
    г) освобождение дроби от знаменателя, содержащего неизвестное. Необходимо обязательно делить проверку или лучше перейти к смешанной системе.

8. Виды уравнений, их стандартный вид, алгоритм решения (в процессе решения).

Ответ:
а) Линейное;
б) квадратное;
в) уравнение высших порядков (биквадратным, возвратное, симметрическое);
г) уравнения содержащие модуль;
д) уравнение с параметром.]

9. Какие общие методы решения уравнений с одним неизвестным?

Ответ: Вынесение общего множителя (разложение на множители), замена переменной, использование ограниченности и монотонности функций, графически.

Понятие равносильности для нас понятие только вводится, и поэтому проведем тест, как же вы этим понятием владеете.

Тест рассчитан на 5–7 минут. Контрольные задания даются в двух вариантах. После окончания работы на доске вывешиваются контрольные ответы. За каждое правильно выполненное задание – 1 балл. После окончания работы ученик оценивает свою работу самостоятельно, затем разбираются неверные ответы (к заданиям предлагаются).

Корни всех приведенных уравнений находятся среди чисел –3, –2, 1, 2, 3. Укажите пары равносильных уравнений.

(x 2 – 6) 2 = x 2

(x – 1)(x 2 – 6) = (1 – x)x

(x – 2)(x 2 – 6) = –x(x – 2)

x 2 – 6 = x

(x 2 + x – 6)(x 2 – x – 6) = 0

x + 3 = 0

x – 2 = 0

(x – 1)(x – 2)(x + 3) = 0

Равносильные уравнения

Корни всех приведенных уравнений находятся среди чисел –2, –1, 1, 2. Укажите пары равносильных уравнений.

(x 2 – 2) 2 = x 2

(x – 1)(x 2 – 2) = x(x – 1)

(x – 2)(x 2 – 2) = x(x – 2)

x 2 – 2 = x

x + 1 = 0

(x 2 – 1)(x – 2) = 0

(x 2 – x – 2)(x 2 + x – 2) = 0

x – 2 = 0

Равносильные уравнения

VI. Решение задач

Ученик должен определить вид уравнения, алгоритм решения данного уравнения, обратить внимание на способы его решения, выбрать рациональный способ решения.

Задачи взяты из “Сборника задач по алгебре” для классов с углубленным изучением математики под редакцией М.Л. Галицкого.

1. Уравнение третьей степени, в стандартном виде. Метод решения – разложения на линейные множители (теорема Безу):

Так как это уравнение рациональное целое с целыми коэффициентами, то оно имеет целые корни, являющиеся делителями свободного члена: 21: 1; 3; 7; 21. x1 = 1 является корнем (убеждаемся подстановкой), поэтому многочлен левой части уравнения делится на двучлен х – 1.

Решим уравнение x² + 10x + 21 = 0. По теореме Виета корни: x2 = –3, x3 = –7, x1 = 1.

Как еще с помощью теоремы Безу можно было выполнить разложение на множители?

Ответ: Если множитель делится на x – 1 и на x + 3, то он делится и на их произведение.

Это уравнение четвертой степени. Метод решения – группировка. Если левая часть уравнения представлена в виде разложения на линейные множители, а в правой – число и выносящиеся: (x + a)(x + b)(x + b)(x + c) = A и a + b = c + d, в этом случае возможна группировка множителей.

Сделаем замену x² + x = t и получим уравнение

3. 5 – 12x³ + 14x² = 12x – 5, 5x² – 12x³ + 14x² – 12x + 5 = 0 возвратное уравнение членов степени. Так как x = 0 не является корнем данного уравнения, разделим почленно на x² и сгруппируем:

Сделаем замену:

4. – это дробно-рациональное уравнение, содержащее модуль.

Ответ: <0; 2; 4>

Алгоритм: а) находим нули модуля; б) дискриминант уравнения разбиваем на промежутки; в) раскрываем модуль на каждом из промежутков; г) выбираем ответ, учитывая данный промежуток; д) ответ – совокупность решений.

– это дробно-рациональное уравнение. Выделим квадрат разности:

Введем новую переменную и получим уравнение вида t² + 2t – 3 = 0. По теореме Виета корни этого уравнения t = 1 или t = –3.

6. ax² + 3ax – (a + 2) = 0 – это квадратное уравнение с параметром. При решении уравнения с параметрами необходимо выяснить, при каких значениях параметров уравнение имеет корни и сколько их в зависимости от параметров при которых это выражение действительно определяет корни уравнения, то есть найти при каком значении параметра: г) x – единственный корень.

При D > 0 уравнение имеет два различных действительных корня, то есть при

При D 4 – 133х³ + 48х² – 133х + 78 = 0.

5. Для каждого значения параметра а решить уравнение ax² – (2a + 7)x + a + 3 = 0.

6. Найдите все значения параметра b, при которых уравнение имеет ровно один корень.

7 * . Решить уравнение x 4 + 4х + 3 = 0.

2. Дается оценка работы учащихся на уроке, выставляются в журнал. Сообщается дата и время консультации перед итоговой контрольной работой по этой теме.

Составление уравнений реакций ионного обмена

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Данный урок продолжает тему «Реакции ионного обмена». Урок поможет закрепить умение составлять уравнения реакций ионного обмена в молекулярной и ионной формах, научит составлять по сокращенному ионному уравнению молекулярные.


источники:

http://urok.1sept.ru/articles/564266

http://interneturok.ru/lesson/chemistry/9-klass/bhimicheskaya-svyaz-elektroliticheskaya-dissociaciyab/sostavlenie-uravneniy-reaktsiy-ionnogo-obmena