Составить уравнение биссекторной плоскости двугранного угла

Сфера, вписанная в пирамиду

Биссекторная плоскость. Основное свойство биссекторной плоскости
Сфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы
Радиус сферы, вписанной в правильную n — угольную пирамиду
Сфера, вписанная в треугольную пирамиду. Формула для радиуса вписанной сферы

Биссекторная плоскость. Основное свойство биссекторной плоскости

Определение 1. Биссекторной плоскостью двугранного угла называют такую плоскость, которая проходит через ребро двугранного угла и делит этот угол на два равных двугранных угла (рис. 1).

Утверждение 1. Точка, расположенная внутри двугранного угла, находится на одном и том же расстоянии от граней этого угла тогда и только тогда, когда она лежит на биссекторной плоскости.

Доказательство. Рассмотрим произвольную точку O, расположенную внутри двугранного угла, и проведем через эту точку плоскость δ , перпендикулярную к ребру AB двугранного угла (рис. 2).

Плоскость δ пересекает ребро AB двугранного угла в точке C, а грани двугранного угла α и β по лучам CD и CE соответственно. Угол DCE является линейным углом двугранного угла. Биссекторная плоскость γ пересекает плоскость δ по биссектрисе CF линейного угла DCE .

Таким образом, справедливость утверждения вытекает из соответствующих теорем о свойствах биссектрисы угла. Доказано.

Следствие 1. Если сфера, расположенная внутри двугранного угла, касается каждой из плоскостей граней этого угла, то центр сферы находится на биссекторной плоскости двугранного угла (рис. 3).

Сфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы

Определение 2. Сферой, вписанной в пирамиду, называют такую сферу, которая касается плоскостей всех граней пирамиды, причем точки касания лежат на гранях пирамиды (рис. 4).

Определение 3. Если сфера вписана в пирамиду, то пирамиду называют описанной около сферы.

Если сфера вписана в пирамиду, то она касается граней каждого внутреннего двугранного угла, образованного соседними гранями пирамиды. В соответствии со следствием 1 центр вписанной в пирамиду сферы должен находиться в точке пересечения биссекторных плоскостей всех внутренних двугранных углов, образованных соседними гранями пирамиды.

Если у пирамиды нет точки, в которой пересекаются биссекторные плоскости всех внутренних двугранных углов, образованных соседними гранями пирамиды, то в такую пирамиду нельзя вписать сферу.

Замечание 1. Для того, чтобы проверить, можно ли в пирамиду вписать сферу, достаточно проверить, существует ли точка пересения биссекторных плоскостей всех внутренних двугранных углов при основании пирамиды. Если такая точка существует, то она будет равноудалена как от основания пирамиды, так и от каждой из боковых граней.

Рассмотрим несколько типов пирамид, в которые можно вписать сферу.

Утверждение 2. Если у пирамиды SA1A2 . An основание O перпендикуляра, опущенного из вершины S на плоскость основания пирамиды, лежит внутри многоугольника A1A2 . An , а все боковые грани пирамиды наклонены под одним и тем же углом к плоскости основания пирамиды, то в такую пирамиду можно вписать сферу.

Доказательство. Пусть все боковые грани пирамиды наклонены к плоскости основания под углом φ , а высота пирамиды равна h. Рассмотрим, например, боковую грань SA1A2 и проведем в ней высоту SB (рис. 5).

По теореме о трех перпендикулярах отрезок OB перпендикулярен ребру A1A2 . Следовательно, угол SBO является линейным углом двугранного угла между боковой гранью SA1A2 и плоскостью основания пирамиды и равен φ. Биссекторная плоскость этого двугранного угла пересекает высоту пирамиды в точке O’ (рис. 6).

Катет OB прямоугольного треугольника SOB выражается через высоту пирамиды h и угол φ по формуле

Катет OO’ прямоугольного треугольника OO’B выражается через высоту пирамиды h и угол φ по формуле

Поскольку длина отрезка OO’ не зависит от выбора боковой грани пирамиды, то биссекторные плоскости всех внутренних двугранных углов при основании пирамиды пересекаются в точке O’, которая и является центром вписанной в пирамиду сферы.

Доказательство утверждения 2 завершено.

Поскольку у любой правильной пирамиды все внутренние двугранные углы при основании равны, то справедливо

Следствие 2. В любую правильную пирамиду можно вписать сферу, причем ее радиус R выражается через высоту пирамиды h и внутренний двугранный угол при основании пирамиды φ по формуле

(1)

Радиус сферы, вписанной в правильную n — угольную пирамиду

Решение. Рассмотрим правильную n — угольную пирамиду SA1A2 . An и обозначим символом O’ центр вписанной в пирамиду сферы, а буквой O – центр основания пирамиды. Проведем плоскость через высоту пирамиды SO и апофему SB какой-либо боковой грани (рис. 7).

Буквой R на рисунке 7 обозначен радиус вписанной в пирамиду сферы, буквой r – радиус вписанной в основание пирамиды окружности, а буквой φ – внутренний двугранный угол при основании пирамиды. Из прямоугольного треугольника OSB получаем

(2)

В силу следствия 2 из формул (1) и (2) получаем

из формулы (3) получаем соотношение

Ответ.

Следствие 3. Радиус сферы, вписанной в правильную треугольную пирамиду с высотой h и ребром основания a, равен

Следствие 4. Радиус сферы, вписанной в правильный тетраэдр с ребром a, равен

Следствие 5. Радиус сферы, вписанной в правильную четырехугольную пирамиду с высотой h и ребром основания a, равен

Следствие 6. Радиус сферы, вписанной в правильную шестиугольную пирамиду с высотой h и ребром основания a, равен

Сфера, вписанная в треугольную пирамиду.
Формула для радиуса вписанной сферы

Утверждение 3. В любую треугольную пирамиду можно вписать сферу.

Доказательство. Доказательство этого утверждения напоминает планиметрическое доказательство возможности вписать окружность в произвольный треугольник.

Действительно, пусть SABC – произвольный тетраэдр. Биссекторная плоскость внутреннего двугранного угла с ребром AC и биссекторная плоскость внутреннего двугранного угла с ребром AB пересекаются по некоторой прямой, проходящей через вершину A. Биссекторная плоскость внутреннего двугранного угла в ребром BC пересекает эту прямую в единственной точке O , которая и является центром вписанной сферы (рис. 8).

Получим формулу, позволяющую вычислить радиус вписанной в тетраэдр SABC сферы. Для этого заметим, что объем пирамиды SABC равен сумме объемов пирамид OABC, OSCA, OSAB, OSCB, причем высота каждой из пирамид OABC, OSCA, OSAB, OSCB равна радиусу R вписанной в пирамиду SABC сферы. Если обозначить площади граней тетраэдра SABC символами

а объемы пирамид SABC, OABC, OSCA, OSAB, OSCB – символами

то справедливы следующие равенства:

где символом Sполн обозначена площадь полной поверхности пирамиды SABC.

Замечание 2. Если в пирамиду (необязательно треугольную) можно вписать сферу, то, рассуждая аналогично, можно получить следующую формулу для радиуса вписанной в пирамиду сферы

где символами Vпир и Sполн обозначены объем и площадь полной поверхности пирамиды соответственно.

Составить уравнения плоскостей делящих пополам двугранные углы

УСЛОВИЕ:

Составьте уравнения плоскостей делящих пополам двугранные углы, образованные плоскостями x-2y+2z+6=0 и 4x+2y-4z+5=0

РЕШЕНИЕ:

ОТВЕТ:

Добавил slava191 , просмотры: ☺ 11785 ⌚ 05.01.2015. математика 1k класс

Решения пользователей

РЕШЕНИЕ ОТ vk54215494

«..Мы всю левую часть умножили на 2.»
для чего, почему и всегда ли так нужно делать?

Написать комментарий

Делим обе части равенства на π

и умножаем на 4

+pi k, k in Z
Можно правую часть записать в виде двух ответов:

x=1+8n in Z : это . [b] -15; -7; 1; 9; 17; ..[/b].

x=3+ 8n, n in Z : это[b] -13; -5; 3; 11; . [/b]

[b]x=-5 – наибольшее отрицательное [/b]

О т в е т. x=1+8n in Z или x=3+ 8n, n in Z

корни чередуются так:

. -15;-13;-7;-5; 1;3; 9;11; 17; 19; .

[b]x=-5 – наибольшее отрицательное [/b] (прикреплено изображение)

a=1 – старший коэффициент
b=1 – средний коэффициент
с=-2 – свободный член

4.
x^2=a-5
При a-5=0 ⇒ при а=5
уравнение имеет один корень х=0

5.
Δ Прямоугольный, так как верно равенство: b^2=a^2+c^2
5^2=3^2+4^2
25=9+16
Значит, ∠ B=90 градусов и ∠ А+ ∠ С=90 градусов.

∠ А- ∠ С=36 градусов.
∠ А+ ∠ С=90 градусов.

складываем оба равенства:

2* ∠ А=126 градусов.

По формулам приведения:

sin^2x+sinx-2=0
D=9
sinx=-2 или sinx=1

sinx=-2 уравнение не имеет корней, -1 ≤ sinx ≤ 1

sinx=1 ⇒ x=(π/2)+2πk, k ∈ Z или х=90 ° +360 ° *k, k ∈ Z

Найдем корни, принадлежащие указанному отрезку с помощью неравенства:

-286 ° ≤ 90 ° +360 ° *k ≤ 204 °

-286 °-90 ° ≤ 360 ° *k ≤ 204 ° -90 °

-376 ° ≤ 360 ° *k ≤ 114 °

Неравенство верно при k=[green]-1[/green] и k=[red]0[/red]

Значит, указанному отрезку принадлежат два корня:

x=90 ° +360 °* ([green]-1[/green])=-270 °

x=90 ° +360 °*[red]0[/red]=90 °

7. KT- средняя линия трапеции:

Cредняя линия трапеции делит высоту трапеции пополам ( см. рис)

Высоты треугольников АКО и СОК равны половине высоты трапеции

S_( Δ АКО)+S_( Δ COK)=44

S_( Δ АКО)+S_( Δ COK)=KO*(h/4) +OT*(h/4)=

О т в е т. [b]176[/b]

B=-2
[i]l[/i]=8 – количество ребер четырехугольной пирамиды

Задание: cоставить уравнение плоскости(u), делящей пополам острый двугранный угол, образованный плоскостью(p1) 3x-4y+6z-2=0 с координатной плоскостью Oyz.

Окей, вторая плоскость(p2) получается задается уравнением By+Cz=0. Произвольная точка М(x0,y0,z0) принадлежит искомой плоскости только тогда, когда d(M,p1)=d(M,p2), то есть расстояния от точки, до заданных плоскостей плоскостей одинаковые, составила уравнение: $$ frac > = frac + C^ > > $$

Ответ должен быть(дан в пособии) $$ (3-sqrt )x-4y+6z-2=0$$ что явно не получится из того уравнения, что я составила. Как можно решить данную задачу?

задан 19 Окт 19:58

Условие надо хотя бы верно записывать. Наверняка так:

Угол, образованный плоскостью $% ; (p1): 3x-4y+6z-2=0 ;$% с координатной плоскостью $%Oyz$%.

@KristinaM: вторая плоскость, то есть Oyz, задаётся уравнением x=0. Поэтому никаких B, C там нет, а будет просто |x|. Тогда после раскрытия модулей возникнут две плоскости. Одна — та, что из ответа. Другая — ей перпендикулярная. По идее, там надо распознать, какая именно из этих плоскостей подходит, то есть какие углы будет острыми. Это легко проверить при помощи рассмотрения векторов нормали к плоскостям и их скалярных произведений.

К слову сказать, By+Cz=0 есть семейство плоскостей, проходящих через ось Ox.

1 ответ

Нормали к плоскостям равной длины: $%;vec =(3; -4; 6); ; vec =(sqrt ; 0; 0),;$% угол между которыми острый. Тогда нормаль к биссекторной плоскости: $% ; vec =(3+sqrt ; -4; 6);-$% сумма нормалей.
Стало быть, уравнение: $%; (3+sqrt )x -4y+ 6z-2=0, ;$% учитывая точку $%(0; 1; 1)$%.

Для того, чтобы оценить ресурс, необходимо авторизоваться.

В учебно-методическом пособии излагаются теоретические основы аналитической геометрии в пространстве, приводятся решения большого числа задач. Пособие содержит варианты задач (с ответами) для самостоятельного решения, список формул и рекомендуемой литературы. Рекомендовано Уральским отделением Учебно-методического объединения вузов РФ в области строительного образования в качестве учебного пособия для студентов строительных специальностей направления 6533500 «Строительство» всех форм обучения. Подготовлено кафедрой высшей математики УГТУ-УПИ.

Биссекторные плоскости

Биссекторная плоскостьосевая плоскость, проходящая через ось проекций Х и расположенная под углом 45 0 к плоскостям проекций П1 и П2. Существует две биссекторные плоскости: первая проходит через первую и третью четверти пространства, вторая – через вторую и четвертую четверти пространства. Если точка принадлежит биссекторной плоскости, то численные значения координат Y и Z должны быть равны.

На рис. 19 показан чертеж точки А, принадлежащей первой биссекторной плоскости и расположенной в третьей четверти пространства.

На рис. 20 показан чертеж точки А, принадлежащей второй биссекторной плоскости и расположенной во второй четверти пространства.

Контрольные задания по теме «Точка»

Ответ
1. Какой отрезок на эпюре определяет удаление точки А от горизонтальной плоскости проекций?A1Ax Oax A2Ax
2. По координатам точки В ( 15; 20; 25) построить эпюр и указать ее положение в пространстве. I II III IV
3. Построить точку С’, симметричную точке С относительно фронтальной плоскости проекций. Указать, в какой четверти пространства находится точка С’. I II III IV

Пример 1. Какими координатами определяется горизонтальная проекция точки А? Указать на эпюре (чертеже)

Пример 2.По чертежу определить координаты точки В и ее положение в пространстве

Пример 3.Построить недостающую проекцию точки С(С2), если она принадлежит плоскости проекций и определить ее положение в пространстве.

Точка принадлежит плоскости проекций, если одна из координат будет равна «0», так как на чертеже задана горизонтальная проекция точки С1, которая определяется координатами Х и Y, то значение Z должно быть равно «0». Поэтому на эпюре Сх º С2. Так как значение Y отрицательное, то С Î задней поле П1.

Пример 4. Построить точку D ¢ , симметричную точке D относительно горизонтальной плоскости П1.

Исходная точка D располагается в I четверти пространства, симметричная точка переместится в IVчетверть. При переходе точки из I четверти в IV-ю изменится только направление координаты Z, координаты Х и Y останутся неизменными, поэтому D1 º 2.

Рис. 24

Контрольные вопросы

1. Основные способы проецирования.

2. Свойства параллельного проецирования.

3. Что такое эпюр Монжа?

4. Что такое четверти пространства?

6. Какими координатами определяются:

— горизонтальная проекция точки;

— фронтальная проекция точки;

— профильная проекция точки?

7. В каких случаях на эпюре (чертеже) горизонтальная и фронтальная проекции точки совпадают?

8. Что называется биссектрисой плоскостью и каковы ее свойства?

9. Как по чертежу определить расстояние от точки до плоскости П123?

Прямая

Две точки прямой в пространстве определяют ее положение в пространстве. На эпюре прямая может быть задана проекциями прямой ( а1 и а2); проекциями двух точек ( А12 и В1,В2); проекциями отрезка прямой (С1D1 и C2D2).


источники:

http://4apple.org/sostavit-uravnenija-ploskostej-deljashhih-popolam/

http://helpiks.org/2-80027.html