Составить уравнение гиперболы зная ось

Гипербола — определение и вычисление с примерами решения

Гипербола:

Определение: Гиперболой называется геометрическое место точек абсолютное значение разности расстояний от которых до двух выделенных точек

Получим каноническое уравнение гиперболы. Выберем декартову систему координат так, чтобы фокусы

Рис. 31. Вывод уравнения гиперболы.

Расстояние между фокусами (фокусное расстояние) равно Согласно определению, для гиперболы имеем Из треугольников по теореме Пифагора найдем соответственно.

Следовательно, согласно определению имеем

Возведем обе части равенства в квадрат, получим

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем неизвестные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Получим Разделив все члены уравнения на величину получаем каноническое уравнение гиперболы: Для знака “+” фокусы гиперболы расположены на оси Ох, вдоль которой вытянута гипербола. Для знака фокусы гиперболы расположены на оси Оу, вдоль которой вытянута гипербола.

Проанализируем полученное уравнение. Если точка М(х;у) принадлежит гиперболе, то ей принадлежат и симметричные точки и следовательно, гипербола симметрична относительно координатных осей, которые в данном случае будут называться осями симметрии гиперболы (Рис. 32). Найдем координаты точек пересечения гиперболы с координатными осями: т.е. точками пересечения гиперболы с осью абсцисс будут точки т.е. гипербола не пересекает ось ординат.

Рис. 32. Асимптоты и параметры гиперболы

Определение: Найденные точки называются вершинами гиперболы.

Докажем, что при возрастании (убывании) переменной х гипербола неограниченно приближается к прямым не пересекая эти прямые. Из уравнения гиперболы находим, что При неограниченном росте (убывании) переменной х величина следовательно, гипербола будет неограниченно приближаться к прямым

Определение: Прямые, к которым неограниченно приближается график гиперболы называются асимптотами гиперболы.

В данном конкретном случае параметр а называется действительной, а параметр b — мнимой полуосями гиперболы.

Определение: Эксцентриситетом гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы

Из определения эксцентриситета гиперболы следует, что он удовлетворяет неравенству Кроме того, эта характеристика описывает форму гиперболы. Для демонстрации этого факта рассмотрим квадрат отношения мнимой полуоси гиперболы к действительной полуоси Если эксцентриситет и гипербола становится равнобочной. Если и гипербола вырождается в два полубесконечных отрезка

Пример:

Составить каноническое уравнение гиперболы, если мнимая полуось b = 5 и гипербола проходит через точку М(4; 5).

Решение:

Для решения задачи воспользуемся каноническим уравнением гиперболы, подставив в него все известные величины:

Следовательно, каноническое уравнение гиперболы имеет вид

Пример:

Составить уравнение гиперболы, вершины которой находятся в фокусах, а фокусы — в вершинах эллипса

Решение:

Для определения координат фокусов и вершин эллипса преобразуем его уравнение к каноническому виду. Эллипс: или Следовательно, большая полуось эллипса а малая полуось Итак, вершины эллипса расположены на оси и на оси Так как то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Итак, Согласно условию задачи (см. Рис. 33):

Рис. 33. Параметры эллипса и гиперболы

Вычислим длину мнимой полуоси Уравнение гиперболы имеет вид:

Гипербола в высшей математике

Решая его относительно , получим две явные функции

или одну двузначную функцию

Функция имеет действительные значения только в том случае, если . При функция действительных значений не имеет. Следовательно, если , то точек с координатами, удовлетворяющими уравнению (3), не существует.

При получаем.

При каждому значению соответствуют два значения , поэтому кривая симметрична относительно оси . Так же можно убедиться в симметрии относительно оси . Поэтому в рассуждениях можно ограничиться рассмотрением только первой четверти. В этой четверти при увеличении х значение у будет также увеличиваться (рис. 36).

Кривая, все точки которой имеют координаты, удовлетворяющие уравнению (3), называется гиперболой.

Гипербола в силу симметрии имеет вид, указанный на рис. 37.

Точки пересечения гиперболы с осью называются вершинами гиперболы; на рис. 37 они обозначены буквами и .

Часть гиперболы, расположенная в первой и четвертой четвертях, называется правой ветвью, а часть гиперболы, расположенная во второй и третьей четвертях, — левой ветвью.

Рассмотрим прямую, заданную уравнением . Чтобы не смешивать ординату точки, расположенной на этой прямой, с ординатой точки, расположенной на гиперболе, будем обозначать ординату точки на прямой , а ординату точки на гиперболе через . Тогда , (рассматриваем только кусок правой ветви, расположенной в первой четверти). Найдем разность ординат точек, взятых на прямой и на гиперболе при одинаковых абсциссах:

Умножим и разделим правую часть на

Будем придавать все большие и большие значения, тогда правая часть равенства будет становиться все меньше и меньше, приближаясь к нулю. Следовательно, разность будет приближаться к нулю, а это значит, что точки, расположенные на прямой и гиперболе, будут сближаться. Таким образом, можно сказать, что рассматриваемая часть правой ветви гиперболы по мере удаления от начала координат приближается к прямой .

Вследствие симметрии видно, что часть правой ветви, расположенная в четвертой четверти, будет приближаться к прямой, определяемой уравнением . Также кусок левой ветви, расположенный во второй четверти, приближается к прямой , а кусок левой ветви, расположенный в третьей четверти, — к прямой .

Прямая, к которой неограниченно приближается гипербола при удалении от начала координат, называется асимптотой гиперболы.

Таким образом, гипербола имеет две асимптоты, определяемые уравнениями (рис. 37).

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность
  • Эллипс

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Гипербола: формулы, примеры решения задач

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b — длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы — бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет — это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат — каноническое уравнение гиперболы:

Если — произвольная точка левой ветви гиперболы () и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

Если — произвольная точка правой ветви гиперболы () и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже — прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где — расстояние от левого фокуса до точки любой ветви гиперболы, — расстояние от правого фокуса до точки любой ветви гиперболы и и — расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.

Характерной особенностью гиперболы является наличие асимптот — прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты — прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами — прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы — это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

Кривые второго порядка

Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух данных, называемых фокусами, есть величина постоянная, равная 2a, и большая чем расстояние между фокусами, равное 2c (рисунок 6).

Рисунок 6

Простейшее каноническое уравнение эллипса получается в системе координат, в которой за ось абсцисс выбрана прямая, соединяющая фокусы, начало координат 0 − середина отрезка, концами которого служат фокусы, ось ординат – прямая, проходящая перпендикулярно оси ОX через точку 0. Тогда уравнение эллипса примет следую-
щий вид:

где

При таком выборе системы координат оси координат совпадают с осями симметрии эллипса, а начало координат − с центром симметрии. Точки А1(a; 0), А2(–a; 0), В1(0; b), В2(0; –b) называются вершинами эллипса. Отрезки, заключенные между вершинами, называются осями эллипса: большая (фокальная) ось А1А2 = 2a, малая ось В1В2 = 2b. Параметры a и b уравнения равны полуосям эллипса. Эксцентриситетом (e) эллипса называется отношение расстояния (2c) между фокусами к большей оси (2a), т. е. ; очевидно, что e 2 = 6.

Ответ:

Тест 22. Уравнение эллипса, полуоси которого равны a = 3, b = 2, имеет вид:

1)

2)

3)

Тест 23. Дано уравнение эллипса

Вычислить длину осей, фокусное расстояние, эксцентриситет:

1) 16; 9; 25;

2) 8; 6; 2

Пример 12. Дан эллипс Написать уравнение его директрис.

Уравнения директрис следующие: . Из уравнения а 2 = 36,
b 2 = 20. Следовательно, a = 6, или с = 4. Найдем e = Подставим в уравнения

Уравнение эллипса, центр которого находится в точке (х0; у0), а оси симметрии параллельны осям координат, имеет вид

Тест 24. Центр эллипса находится в точке:

Гиперболой называется множество точек плоскости, модуль разности от каждой из которых до двух данных точек, называемых фокусами, есть величина постоянная, равная 2a, и меньшая чем расстояние между фокусами, равное 2c (рисунок 7).

Простейшее каноническое уравнение гиперболы имеет вид

(1)

Прямая, соединяющая фокусы F1, F2 гиперболы, служит осью абсцисс, начало координат находится в середине между фокусами; при этом оси координат совпадают с осями симметрии гиперболы, начало координат – с ее центром симметрии (оси и центр гиперболы).

Гипербола имеет две действительные вершины А1(a; 0), А2(–a; 0) на фокальной оси; отрезок А1А2 = 2a называется действительной осью гиперболы, отрезок В1В2 = 2b – мнимой осью гиперболы. Таким образом, параметры a и b в уравнении гиперболы равны длинам действительной и мнимой полуосей соответственно.

Если a = b, то гипербола называется равносторонней.

Если мнимая ось гиперболы имеет длину 2a и направление по оси x, а действительная ось, длиной 2b, совпадает с осью y, то уравнение такой гиперболы имеет следующий вид:

(2)

где

Гиперболы (1) и (2) называются сопряженными гиперболами.

Эксцентриситетом гиперболы называется отношение расстояния между фокусами к действительной оси: e = и при этом e > 1. Директрисами гиперболы называются прямые, перпендикулярные к фокальной оси и отстоящие на расстоянии, равном Уравнения директрис следующие: Асимптоты гиперболы определяются равенствами

Если точка, двигаясь по гиперболе, неограниченно удаляется, то расстояние ее от одной из асимптот стремится к нулю. Асимптоты являются диагоналями прямоугольника со сторонами 2a, 2b (рисунок 7).

Пример 13.Составить уравнение гиперболы, оси которой совпадают с осями координат, зная, что:

1. Расстояние между вершинами равно 8, а расстояние между фокусами – 10.

2. Действительная ось равна 6, гипербола проходит через точку
(9; –4).

1. Уравнение гиперболы имеет вид

Так как расстояние между вершинами равно 8, то 2a = 8 или a = 4. Учитывая, что расстояние между фокусами равно 10, имеем 2c = 10, откуда c = 5. Найдем b 2 из соотношения b 2 = c 2 – а 2 , т. е. b 2 = 5 2 – 4 2 =
= 25 – 16 = 9.

Ответ:

2. Так как действительная ось равна 6, то 2a = 6 или a =3. Поэтому уравнение гиперболы принимает вид Поскольку гипербола проходит через точку (9; –4), то ординаты этой точки обращают уравнение в истинное равенство, т. е. или или 9 – 1 = или b 2 = = 2.

Ответ:

Тест 25. Уравнение гиперболы, действительная ось которой равна 10 и лежит на оси ОX, а мнимая ось равна 16 и лежит на оси ОY, имеет вид:

1)

2)

3)

Тест 26. Дано уравнение гиперболы Вычислить длину осей, фокусное расстояние, эксцентриситет:

1) 10; 16; 2

2) 4; 5;

3) 5; 4;

Пример 14. Дана гипербола Написать уравнение ее директрис и асимптот.

Из уравнения а 2 = 16, b 2 = 25. Откуда a =4, b =5. Найдем Тогда уравнения директрис следующие: , или x = , или x =

Уравнения асимптот после подстановки a, b принимают вид y =

Ответ: x = y =

Тест 27. Указать, принадлежит ли точка (0; 2) гиперболе = 1:

Уравнение гиперболы, центр которой находится в точке (х0; у0), действительная ось совпадает с осью ОX, мнимая – с осью ОY, имеет вид

Тест 28. Центр гиперболы находится в точке:

Ответы на тестовые задания

Номер теста
Правильный ответ

Парабола

Параболой называется геометрическое место точек, равноудаленных от данной точки, называемой фокусом параболы, и данной прямой, называемой директрисой параболы (рисунок 8).

Рисунок 8

Если за ось абсцисс принять перпендикулярную прямую, проведенную из фокуса к директрисе, а начало координат поместить посередине между фокусом и директрисой, то уравнение параболы примет вид

где р – параметр параболы, расстояние от фокуса параболы до ее директрисы.

Парабола имеет одну ось симметрии, которая совпадает при таком выборе системы координат с осью X. Единственная вершина параболы совпадает с началом координат и является единственной точкой пересечения параболы с осями.

Пример 15. Составить уравнение параболы, зная, что фокусы имеют координаты (0; 5), ось ординат служит осью симметрии, а вершина находится в начале координат.

Так как осью симметрии является ось ОY, то уравнение будет иметь вид х 2 = 2ру, так как фокус в общем случае имеет координаты , то исходя из условия имеем = 5, откуда p = 10. Таким образом, х 2 = 2 × 10 × у или х 2 = 20у – искомое уравнение.

Тест 29. В уравнении параболы у 2 = 3х значение параметра p равно:

2) ;

Тест 30. Среди уравнений второго порядка указать уравнение гиперболы:

1)

2)

3)

Если вершина параболы находится в точке (x0; y0), то ее каноническое уравнение примет следующий вид:

Ответы на тестовые задания

Номер теста
Правильный ответ

Векторная алгебра

При изучении различных разделов экономики, механики, физики, других учебных дисциплин приходится иметь дело с величинами, для характеризации которых в выбранной системе единиц достаточно указать их численные значения. Эти величины называются скалярными. К числу скалярных величин можно отнести длину, площадь, объем, массу, температуру и т. п. Встречаются, тем не менее, такие величины, для определения которых необходимо знать их направления в пространстве. Указанные величины будем называть векторными. Примерами векторных величин являются сила, скорость, ускорение.

Геометрические векторные величины изображаются с помощью направленных отрезков.

Связанным вектором (или направленным отрезком) называется любой отрезок прямой, если только указано, какая из двух ограничивающих его точек является начальной, какая – конечной. Если точка А – начало отрезка, а точка В – его конец, то связанный вектор будем обозначать Его направление будем указывать стрелкой, идущей от начала А к концу В.

Длиной (или модулем) связанного вектора называется длина отрезка АВ. Связанный вектор, у которого начало и конец совпадают, называется нулевым. Нулевой вектор обозначается 0, его длина равна 0: он направления не имеет.

Связанные векторы и называются сонаправленными, если являются сонаправленными лучи и противоположно направленными – если противоположно направлены эти лучи.

Два ненулевых связанных вектора и назовем равными (это обозначается = ), если они сонаправлены и имеют одинаковую длину.

Свободным вектором а (или просто вектором) назовем множество равных между собой связанных векторов. При дальнейшем из контекста будет ясно, какой вектор имеется в виду (связанный или свободный). Для задания вектора достаточно указать какой-либо один вектор из всего множества <AB, CD, MN, ¼> равных связанных векторов, например, (рисунок 9).

Рассмотренные понятия (длина, направление и т. п.), которые введены для связанных векторов, имеют аналоги также и для свободных. Часто векторы обозначают одной жирной строчной буквой: = а (рисунок 10).

Линейные операции над векторами

Определим для свободных векторов операции их сложения, вычитания, умножения вектора на действительное число.

Суммой двух векторов a и b по правилу треугольника называется такой третий вектор с, что начало его совпадает с началом вектора а, а конец – с концом вектора b.

Иногда вместо с = а+bпишут Суммой а1 +а2 +…
… + аn конечного числа векторов называется такой вектор а, который замыкает ломаную линию, построенную из данных векторов а1, а2,…, аn таким образом, что начало каждого последующего вектора совпадает с концом предыдущего. Указанный вектор а направлен из начала первого вектора суммы в конец последнего (правило многоугольника) (рисунок 10).

c = a + b

На рисунке 11 изображена сумма а = а1 + а2 + а3 + а4 + а5 векторов а1, а2, а3, а4, а5.

Произведением вектора а на число a называется вектор b = a а, длина которого равна направление которого совпадает с направлением а, если a > 0, и противоположно направлению а, если
a 0 будем обозначать единичный вектор, имеющий направление вектора а.


источники:

http://function-x.ru/curves_hyperbola.html

http://megaobuchalka.ru/7/28566.html