Составить уравнение химической реакции бор кислород

Оксид бора

Оксид бора

Систематическое
наименование
Оксид бора III
Традиционные названияоксид бора, сесквиоксид бора, окись бора, борный ангидрид
Хим. формулаB2O3
Рац. формулаB2O3
Состояниебесцв. стекловидная масса
Молярная масса69.6182 г/моль
Плотность
Энергия ионизации13,5 ± 0,1 эВ
Температура
• плавления480 °C
• кипения1860 °C
Давление пара0 ± 1 мм рт.ст.
Растворимость
• в воде2.2 г/100 мл
Рег. номер CAS[1303-86-2]
PubChem518682
Рег. номер EINECS215-125-8
SMILES
RTECSED7900000
ChEBI30163
ChemSpider452485
Предельная концентрация5 мг/м 3
ЛД50

3160 мг/кг (мыши, перорально)

1868 мг/кг (мыши, внутрибрюшинно)

Токсичностьнизкая
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Оксид бора (сесквиоксид бора, борный ангидрид) B2O3 — бинарное неорганическое химическое соединение бора с кислородом, ангидрид борной кислоты, бесцветное, довольно тугоплавкое, стекловидное или кристаллическое вещество, диэлектрик.

Стеклообразный оксид бора имеет слоистую структуру (расстояние между слоями 0,185 нм), в слоях атомы бора расположены внутри равносторонних треугольников BO3 (d В—О=0,145 нм). Эта модификация плавится в интервале температур 325—450 °C и обладает высокой твёрдостью. Она получается при нагревании бора на воздухе 700 °C или обезвоживанием ортоборной кислоты.

Кристаллический B2O3 , который получают осторожным отщеплением воды от метаборной кислоты HBO2 , существует в двух модификациях — с гексагональной кристаллической решёткой, при 400 °C и 2200 МПа переходящей в моноклинную.

Содержание

  • 1 Свойства
  • 2 Получение
  • 3 Применение
  • 4 Биологическая роль
    • 4.1 Токсикология

Свойства

  • Борный ангидрид гигроскопичен, он бурно растворяется в воде, образуя вначале различные метаборные кислоты общей формулы (HBO2)n . Дальнейшее оводнение приводит к образованию ортоборной кислоты H3BO3 .

Расплавленный B2O3 хорошо растворяет оксиды многих элементов. С оксидами металлов образует соли бораты.

  • B2O3 является кислотным ангидридом, проявляя также очень слабые признаки амфотерности:

2 B2O3 + P4O10 → 4 BPO4 B2O3 + 3 H2O → 2 H3BO3

  • С соляной кислотой реагирует при нагревании ( t>100∘C ): B2O3 + 6 HCl → t 2 BCl3 + 3 H2O
  • Сам оксид бора не восстанавливается углеродом даже при температуре белого каления, однако разлагается, если одновременно ввести в реакцию вещества, способные заместить кислород (хлор или азот):

B2O3 + 3 C + 3 Cl2 → 2 BCl3 + 3 CO

  • При нагревании оксида бора с элементарным бором выше 1000 о в парах существуют термически устойчивые линейные молекулы O=B—B=O. При быстром охлаждении паров ниже 300 о может быть получен белый твёрдый полимер состава (B2O2)n , не имеющий определённой точки плавления и сильно реакционноспособный. Под давлением в 60 тыс. ат. и температуре 1500 о оксид бора взаимодействует с элементарным бором по реакции:

B2O3 + 4 B → 3 B2O Этот низший оксид бора имеет графитоподобную слоистую структуру.

Получение

Образуется при нагревании бора в атмосфере кислорода или на воздухе

А также при обезвоживании борной кислоты:

Применение

  • Флюсы для стекла и эмали.
  • Исходный материал для синтеза других соединений бора, таких как карбид бора.
  • Добавка, используемая в стекловолокне (оптических волокнах).
  • Используется в производстве боросиликатного стекла.
  • Используется в качестве кислотного катализатора в органическом синтезе.

Биологическая роль

Токсикология

Оксид бора B2O3 (сесквиоксид бора; ангидрид борной кислоты) по степени воздействия на организм человека относится к веществам 3-го класса опасности («умеренно-опасное» химическое вещество).

Предельно допустимая концентрация оксида бора в воздухе рабочей зоны составляет 5 мг/м 3 .

Реактив пожаро- и взрывобезопасен.

Вдыхание пыли оксида бора, судя по всему, может вызвать раздражение слизистых оболочек.

В больших концентрациях оксид бора может обладать гонадотропным или гепатотоксическим действием.

Кислород: химия кислорода

Кислород

Положение в периодической системе химических элементов

Кислород расположен в главной подгруппе VI группы (или в 16 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение кислорода

Электронная конфигурация кислорода в основном состоянии :

+8O 1s 2 2s 2 2p 4 1s 2s 2p

Атом кислорода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 2 неподеленные электронные пары в основном энергетическом состоянии.

Физические свойства и нахождение в природе

Кислород О2 — газ без цвета, вкуса и запаха, немного тяжелее воздуха. Плохо растворим в воде. Жидкий кислород – голубоватая жидкость, кипящая при -183 о С.

Озон О3 — при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода.

Кислород — это самый распространённый в земной коре элемент. Кислород входит в состав многих минералов — силикатов, карбонатов и др. Массовая доля элемента кислорода в земной коре — около 47 %. Массовая доля элемента кислорода в морской и пресной воде составляет 85,82 %.

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе.

Способы получения кислорода

В промышленности кислород получают перегонкой жидкого воздуха.

Лабораторные способы получения кислорода:

  • Разложение некоторых кислородосодержащих веществ:

Разложение перманганата калия:

Разложение бертолетовой соли в присутствии катализатора MnO2 :

2KClO3 → 2KCl + 3O2

Разложение пероксида водорода:

2HgO → 2Hg + O2

Соединения кислорода

Основные степени окисления кислород +2, +1, 0, -1 и -2.

Степень окисленияТипичные соединения
+2Фторид кислорода OF2
+1Пероксофторид кислорода O2F2
-1Пероксид водорода H2O2

Пероксид натрия Na2O2 и др.

-2Вода H2O

Оксиды металлов и неметаллов Na2O, SO2 и др.

Соли кислородсодержащих кислот

Кислородсодержащие органические вещества

Основания и амфотерные гидроксиды

Химические свойства

При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

1. Кислород проявляет свойства окислителя (с большинством химических элементов) и свойства восстановителя (только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами , и с неметаллами . Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

1.2. Кислород реагирует с серой и кремнием с образованием оксидов:

1.3. Фосфор горит в кислороде с образованием оксидов:

При недостатке кислорода возможно образование оксида фосфора (III):

Но чаще фосфор сгорает до оксида фосфора (V):

1.4. С азотом кислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000 о С), образуя оксид азота (II):

N2 + O2→ 2NO

1.5. В реакциях с щелочноземельными металлами, литием и алюминием кислород также проявляет свойства окислителя. При этом образуются оксиды:

2Ca + O2 → 2CaO

Однако при горении натрия в кислороде преимущественно образуется пероксид натрия:

2Na + O2→ Na2O2

А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

K + O2→ KO2

Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

Цинк окисляется до оксида цинка (II):

2Zn + O2→ 2ZnO

Железо , в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

2Fe + O2→ 2FeO

4Fe + 3O2→ 2Fe2O3

3Fe + 2O2→ Fe3O4

1.6. При нагревании с избытком кислорода графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Кислород взаимодействует со сложными веществами:

2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды . При этом образуются оксиды:

4FeS + 7O2→ 2Fe2O3 + 4SO2

Ca3P2 + 4O2→ 3CaO + P2O5

2.2. Кислород окисляет бинарные соединения неметаллов:

  • летучие водородные соединения ( сероводород, аммиак, метан, силан гидриды . При этом также образуются оксиды:

2H2S + 3O2→ 2H2O + 2SO2

Аммиак горит с образованием простого вещества, азота:

4NH3 + 3O2→ 2N2 + 6H2O

Аммиак окисляется на катализаторе (например, губчатое железо) до оксида азота (II):

4NH3 + 5O2→ 4NO + 6H2O

  • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора ( сероуглерод, сульфид фосфора и др.):

CS2 + 3O2→ CO2 + 2SO2

  • некоторые оксиды элементов в промежуточных степенях окисления ( оксид углерода (II), оксид железа (II) и др.):

2CO + O2→ 2CO2

2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

Например , кислород окисляет гидроксид железа (II):

Кислород окисляет азотистую кислоту :

2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

CH4 + 2O2→ CO2 + 2H2O

2CH4 + 3O2→ 2CO + 4H2O

CH4 + O2→ C + 2H2O

Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

Бор (B)

Первыми бор получили французы Гей-Люссак и Тенар в 1808 году.

В природе элементарный бор не встречается. Почит во всех минералах бор связан с кислородом, он встречается в небольших концентрациях во многих природных соединениях, в виде боратов и боросиликатов, в изверженных и осадочных породах, в водах морей, соляных озер, горячих гейзеров, грязевых вулканов.

Электронная конфигурация бора — 1s 2 2s 2 2p 1 (см. Электронная структура атомов).


Рис. Электронная конфигурация атома бора.

На внешнем электронном слое бора находятся три электрона, которые он может либо отдавать, либо принимать еще 3, проявляя кислотность +3 или -3.

Бор, как простое вещество

Бор является инертным (при н. у.) неметаллом, образует ряд аллотропных модификаций, отличающихся строением кристаллической решетки — это самое твердное (после алмаза) природное вещество, обладающее малой электропроводностью. Свойства бора во многом зависят от его модификации и чистоты.

Химические свойства бора:

  • при комнатной температуре бор вступает в реакцию только со фтором;
  • при t=500-700°C реагирует с кислородом, серой, хлором: 4B + 3O2 = 2B2O3;
  • при t=1200°C реагинует с кремнием (силицид бора) и азотом (нитрид бора): 3B + Si = B3Si;
  • при t=2000°C реагинует с углеродом: 3C + 12B = B12C3;
  • в сплавах с металлами бор образует бориды различного состава (в зависимости от условий сплавления и концентрации бора): Ni + 2B = NiB2; 2Ni + B = Ni2B;
  • с парами воды бор вступает в реакцию при температуре красного каления: 6H2O + 2B = 2H3BO3 + 3H2.
  • взаимодействует с горячими концентрированными азотной и серной кислотой, а также царской водкой: 3HNO3 + B = 3NO2 + H3BO3.
  • с кислотами неокислителями бор не реагирует.

Соединения бора

Борная кислота (H3BO3) — это слабая одноосновная кислота, представляет собой растворимое в воде бесцветное кристаллическое вещество.

Борную кислоту получают из минерала сассолина.

Кислотные свойства борной кислоты обусловлены образованием протона при ее взаимодействии с водой:

При нагревании борная кислота, теряя воду, превращается в метаборную кислоту:

Борная кислота применяется как дезинфицирующее и антисептическое средство, для изготовления эмалей, специальных стекол, цементов, косметики, средств гигиены.

Борный ангидрид (B2O3) — диэлектрическое бесцветное кристаллическое вещество, легко переходящее в стеклообразное состояние.

Энергично вступает в реакцию с водой, образуя борную кислоту: B2O3 + 3H2O = 2H3BO3.

Получение борного ангидрида:

Борный ангидрид нашел применение в производстве специальных стекол и для получения бора.

Получение бора:

  • металлотермией получают аморфный «грязый» бор (магний и натрий выступают в роли восстановителей): B2O3 + 3Mg = 2B + 3MgO;
  • кристаллический бор высокой частоты получают при температуре 800°C восстановлением галогенидов бора водородом: 2BBr3 + 3H2 = 6HBr + 2B;
  • промышленным способом бор получают электролизом расплава K[BF4] и B2O3 (t=800-1000°C).

Применение бора:

  • в изготовлении полупроводников (бор — полупроводник p-типа с дырочной проводимостью);
  • для изготовления огнеупорных, кислотостойких материалов (силициды устойчивы к действию воды, щелочей, кислот, высокой температуры);
  • в качестве металлургических добавок при изготовлении жаропрочной, механически и коррозионноустойчивой стали;
  • для изготовления деталей реактивных двигателей, газовых турбин, работающих в тяжелых условиях высоких температур;
  • в ядерной энергетике для изготовления замедлителей быстрых нейтронов и для биологической защиты.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе


источники:

http://chemege.ru/kislorod/

http://prosto-o-slognom.ru/chimia/508_bor_B.html