Составить уравнение отраженного луча от прямой

Решение типовых задач контрольной работы по разделам 1 и 2

Тема «Функции нескольких переменных» будет рассмотрена после определенного интеграла.

1. ЛИНЕЙНАЯ АЛГЕБРА

1.1. Действия с матрицами

1.1.1. Выполнить действия

Сначала умножаем матрицу на число, а затем вычитаем из одной матрицы другую

б) нужно перемножить две матрицы: С = AS. Это возможно в случае, если число столбцов матрицы А равно числу строк матрицы S. Элемент Cjk матрицы С имеет вид:

(г = 1, 2, . и; к = 1, 2, . и), т. е. элемент матрицы С, стоящей в г-й строке и к-м столбце, равен сумме произведений соответственных элементов г-й строки матрицы А и к-го столбца матрицы S.

Справа от определителя приписываются два первых столбца, берутся со знаком «+» три произведения элементов, стоящих на главной диагонали и двух диагоналях ей параллельной и со знаком минус три произведения элементов, стоящих на побочной диагонали и двух диагоналях ей параллельной;

б) разложением по строке.

Определитель D равен сумме произведений всех элементов произвольной его строки на их алгебраические дополнения

где Aj — алгебраическое дополнение элемента определителя Яу, равное

1.2.1. Убедимся, что определитель D равен нулю

а) по определению (одной из схем):

Здесь Mj — минор элемента Яу, т. е. определитель (n — 1)-го порядка, получающийся после вычеркивания из определителя n-го порядка i-й строки и у-го столбца.

Вычисляем определитель D разложением по элементам первой строки

1.3. Обратная матрица

1.3.1. Найти обратную матрицу к матрице А и проверить выполнение равенства А ¦ A1 = £:

то матрица А является невырожденной и для нее существует об-

ратная матрица А 1.

Находим алгебраические дополнения для определителя Д:

Составляем матрицу из этих алгебраических дополнений и транспонируя ее, получаем присоединенную матрицу (А*):

Вычисляем обратную матрицу А

Так как А ¦ А 1 = то обратная матрица найдена правильно;

Находим алгебраические дополнения

Отсюда: х = 1,5; у = 3.

1.4.1. Записать систему в матричном виде Ах = b :

и решить ее средствами матричного исчисления.

Решение этой системы через обратную матрицу А 1 имеет вид

В пункте 1.3.1: а) была найдена обратная матрица А 1, тогда

Можно сделать проверку, т. е. подставить найденные значения х и у в исходную систему уравнений.

1.4.2. Решить систему методом исключения переменных (методом Гаусса):

Выберем в качестве первого ведущего уравнения — первое уравнение системы и оно в дальнейшем остается без изменения, а в качестве первого ведущего неизвестного — хь

Исключаем неизвестную х1 из второго и третьего уравнений системы с помощью первого уравнения. Для этого из 1-го уравнения вычитаем второе, получим х2 + 2х3 = 0, затем 1-ое уравнение умножаем на 3, а 3-е уравнение — на 2 и вычитаем из одного другое, получим 2х2 + х3 = 3.

Неизвестная х1 исключена. Первый шаг закончен. Теперь второе уравнение берется за ведущее и оно в дальнейшем не изменяется, а за ведущую неизвестную принимается х2. Исключаем из 3-го уравнения х2, для этого 2-ое уравнение умножаем на 2 и вычитаем из него 3-е уравнение системы, получаем 3х3 = -3.

Прямой ход метода Гаусса закончен. Обратным ходом получаем:

Итак, х1 = 4, х2 = 2, х3 = -1.

1.4.3. Дана система

Рассмотрим минор 2-го порядка


Так как миноры d^, и d| равны нулю, то ранг системы

равен двум, а так как минор = 0, то и ранг расширенной матрицы равен двум. Равенство рангов расширенной матрицы и матрицы системы на основании теоремы Кронекера—Капелли говорит о том, что система алгебраических уравнений совместна, т. е. имеет решение.

2. Найти общее решение системы в виде

Так как число неизвестных пять, а ранг матрицы равен двум, то разность между ними, равная трем (n — r = 5 — 2 = 3), говорит

о том, что три неизвестных будут свободными, пусть это будут x3, x4, x5.

Берем первые два уравнения системы и записываем их относительно x1 и x2 (коэффициенты при этих неизвестных составляют минор 2-го порядка отличный от нуля), а неизвестные x3, x4, x5 переносим в правую часть:

Имеем систему двух уравнений с двумя неизвестными x1 и x2. Умножая первое уравнение на 5, а второе на 7 и вычитая одно из другого, найдем x1 и подставляя его в 1-ое уравнение, после преобразований получим выражение для x2:

3. Найти частное решение системы a = (х1, х2, х3, х4, х5), положив х3 = 5, х4 = 2, х5 = 3 и проверить систему.

Находим х1 и х2:

Следовательно, частное решение имеет вид:

Подставляем в исходную систему значенш

Выполнение тождества для всех уравнений системы говорит о том, что векторЯвляется частным реше

нием исходной системы уравнений.

1.5. Собственные числа и собственные векторы

1.5.1. Найти собственные числа и соответствующие им собственные векторы для матрицы


отсюда (5 — 1) ¦ (-1) — 2 ¦ 7 = 0, или I2 — 51 — 14 = 0. Корни этого уравнения 1 = -2 и 12 = 7 и являются собственными числами.

Для отыскания собственных векторов используем систему уравнений

Полагая 1 = 11 = -2, получаем систему уравнений для первого собственного вектора U(M1, M2):

Следовательно, первым собственным вектором, определяющим первое собственное направление, является

Меняя M2, будем получать различные векторы, лежащие на одной прямой (коллинеарные). Все они — собственные.

Полагая 1 = 12 = 7, получаем систему уравнений для отыскания координат второго собственного вектора V (V1; v2):

Отсюда v1 = v2 — общее решение (v2 — свободная, v1 — базисная переменная).

Второй собственный вектор V(V1; v2) = (v2; v2) = V2 (1; 1) определяет второе собственное направление.

2.1. Прямая линия на плоскости

2.1.1. На прямую /: 3x + 2y — 12 = 0, которая способна отражать лучи, падает луч, заданный уравнением I1: 3x + 4y — 18 = 0. Составить уравнение отраженного луча.

Решение. Так как угол падения луча равен углу отражения луча, то Zj = Z j2, т. е. tg j1 = tg j2 (рис. 31).

Уравнение отраженного луча — прямой /2 — ищем в виде: y — yA = k2(x — xa).

Для нахождения координат точки А решим систему уравнений:

Вычитая, найдем: -2у + 6 = 0, у = 3 и 3x = 12 -2у = 12 — 2 ¦ 3 = 6, x = 2, т. е. xA = 2 и yA = 3.

Найдем угловые коэффициенты прямых / и /1:

Запишем тангенс угла между прямыми / и /1:

Для нахождения углового коэффициента прямой /2 запишем тангенс угла между прямыми / и /2 и учтем, что tg Р1 = tg (pi-

Отсюда Т огда искомое уравнение отраженного луча

2.1.2. Дан треугольник АВС с вершинами А(5; 6), B(4; -5), C(-4; 5) (рис. 32).

Найдем уравнения всех сторон треугольника и их угловые коэффициенты.

Уравнение прямой AS:

отсюда 11 ¦ х — у — 49 = 0 или у = 11х — 49 и угловой коэффициент прямой AS равен: Kab = 11.

Уравнение прямой AC:

Уравнение прямой SC: отсюда

а) вычислим величину внутреннего угла А треугольника:

отсюда ZA = 78°27’55» = 1,37 (с точностью до 0,01) радиан;

б) найдем точку M пересечения медиан.

Определяем координаты точек K и O, делящих стороны AS и SC попалам:

Уравнение медианы CK:

отсюда

Уравнение медианы AO:

отсюда

Решая систему уравнений, описывающих медианы CK и AO, найдем координаты точки M:

в) находим точку Р пересечения высот CD и AE.

Уравнение высоты CD ищем в виде: y — yC = KCD(x — xC) и так как прямая CD L прямой AS, то

Уравнение высоты AE берем в виде: y — yA = KAE(x — xA) и так как прямая AE L прямой SC, то

г) определяем длину высоты треугольника А£, опущенной из вершины А на сторону SC, для чего запишем нормальное уравнение прямой SC:

е) находим систему линейных неравенств, определяющих внутреннюю область треугольника ASC вместе с границами.


Тогда длина высоты А£ равна:

д) площадь треугольника найдем по формуле:

Имеем:

Берем любую точку, лежащую внутри треугольника ASC, например, точку (1; 1) и подставляем ее координаты в левую часть уравнений сторон: 11 ¦ 1 — 1 — 49 = -39 0;

1 — 9 ¦ 1 + 49 = 41 > 0, следовательно, система неравенств имеет вид:

Найдите точку встречи луча с осью.

Луч света направлен по прямой
x=-4-2t
y=3+t
Дойдя до оси Ox, он от неё отражается. Найдите точку встречи луча с осью Ox и уравнение отраженного луча.

Исключим t:
из первого во второе : y=3+t = 3+ (x+4)/(-2) = 1-1/2*x;
y = 1+k*x; k= — 1/2;
y = 0 тогда х=2 – это и есть точка встречи.
Запишем уравнение отраженного
y-y0 = k1*(x-x0); y0=0; x0= 2; k1=-k;
y = 1/2 * (x-2) = x/2 -1;

Геометрическая оптика в физике — формулы и определение с примерами

Содержание:

Геометрическая оптика – это раздел оптики, в котором изучаются законы распространения световой энергии в прозрачных средах на основе представления о световом луче. Световой луч – это линия, имеющая направление, вдоль которого распространяется энергия световых волн.

Закон отражения света с точки зрения корпускулярной и волновой теории

Если луч света состоит из частиц, как утверждал И. Ньютон, то можно полагать, что они отражаются от поверхности, как упругие мячи (рис. 149) в соответствии с законом отражения, изученным в геометрической оптике.

К такому же выводу приводит и волновая теория, основанная на принципе Х. Гюйгенса: каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Огибающая фронты вторичных волн является фронтом результирующей волны (§ 11).

Рассмотрим отражение плоской волны от поверхности MN (рис. 150). Лучи

Поскольку рассматриваемые треугольники равны, то углы равны, лучи лежат в одной плоскости, выполняется закон отражения света.

Запомните! Закон отражения: Угол падения равен углу отражения Луч падающий, луч отраженный и перпендикуляр, восстановленный в точку падения луча к границе раздела двух сред, лежат в одной плоскости.

На основе волновой теории можно объяснить, почему свет почти не отражается от поверхности толстого стекла и практически полностью отражается от тончайшей металлической фольги. Стекло – диэлектрик, в нем нет свободных заряженных частиц, он прозрачен для электромагнитных волн. В металлах свободные электроны под действием световой волны совершают колебательные движения, созданное ими поле отражает световую волну.

Применение закона отражения

Закон отражения получил применение в различных устройствах и аттракционах.

На транспорте применяется угловой отражатель – катафот, изготовленный из стекла или пластмассы. Сзади велосипеда укрепляют красный, впереди – белый, на спицах колес – оранжевый. Светоотражатель направляет луч света обратно к освещающему его источнику независимо от угла падения света на поверхность. Ими оборудуются все транспортные средства и опасные участки дорог. Светосигнальные приборы европейского образца появились на автодорогах республиканского значения, их установили на участках «Алматы – Ташкент – Термез», «Новый обход перевала Куюк» в Жамбылской области (рис. 151). Приборы заряжаются солнечными лучами, и они освещают осевую линию дороги в темное время суток. Установлены сигнальные столбики с надписью «Kazautozhol» на автомобильных дорогах, где нет искусственного освещения.

Светоотражающие материалы используются для пошива спецодежды – костюмов для работников пожарных, медицинских, военных и других видов служб. Существует два вида светоотражателей: на текстильной и основе ПВХ. Светоотражатели на текстильной основе производят с использованием стеклянных микрошариков с алюминиевым слоем отражателя, которые наносятся на рабочую поверхность материал полимерным клеем. Светоотражатели на основе ПВХ производят с использованием микропирамидок. Они превосходят светоотражатели на текстильной основе в износостойкости, поскольку микропирамидки находятся изнутри пленки.

Формула плоского зеркала

Запишем формулу плоского зеркала в соответствии с изображением, полученным на рисунке 158:

где d − расстояние от предмета до зеркала; − расстояние от зеркала до изображения. Знак минус свидетельствует о том, что изображение мнимое.

Изображение в двух плоских зеркалах

С помощью двух плоских зеркал можно получить несколько изображений, число которых определяется углом между отражающими поверхностями зеркал При построении необходимо помнить, что изображение первого зеркала становится предметом для второго зеркала, и наоборот, изображение второго зеркала – предметом первого. Последнее полученное изображение находится за отражающей поверхностью двух зеркал (рис. 159). Для определения числа изображений необходимо от числа секторов, на которые угол a делит полный угол, равный 360°, отнять один, в котором находится сам предмет:

Например, при число изображений в зеркалах равно:

Сферические зеркала. Основные точки и линии зеркал

Зеркала, отражающая поверхность которых представляет собой часть сферы, называют сферическими.

Основные точки и линии зеркал: вершина зеркала – точка O; центр кривизны – точка C; главная оптическая ось (ГОО) − прямая, проходящая через вершину и центр зеркала; фокус зеркала – точка F, в которой фокусируются все лучи, падающие на плоскость зеркала параллельно ГОО (рис. 160). Фокус выпуклого зеркала мнимый, он находится за плоскостью зеркала.

Введем еще несколько основных точек и линий для сферических зеркал. Побочная оптическая ось (ПОО) – прямая, проходящая через центр кривизны зеркала С. Фокус побочной оптической оси F1 находится в точке пересечения ПОО с фокальной плоскостью (ФП). Через эту точку проходят лучи, параллельные ПОО. Фокальная плоскость – это плоскость, перпендикулярная главной оптической оси и проходящая через ее фокус. МК – главная плоскость сферического зеркала – это плоскость, перпендикулярная ГОО и проходящая через вершину зеркала.

Формула вогнутого сферического зеркала

Формула вогнутого сферического зеркала справедлива для параксиальных лучей, которые составляют с главной оптической осью малые углы. При таком условии фокальная плоскость перпендикулярна главной оптической оси. На рисунке 161 изображен луч источника света S, он отражается от точки A поверхности вогнутого зеркала.

KM − касательная в точке А, перпендикулярная радиусу AC или побочной оптической оси. Для параксиальных лучей можно считать, что: следовательно, расстояние от зеркала до предмета расстояние от зеркала до изображения радиус кривизны Выразим через катет AB треугольников полученных в результате построения:

Установим связь между углами треугольников. Угол является внешним для треугольника угол − внешним для треугольника следовательно:

Из (5) выразим и, подставив в (4), получим:

Тангенсы малых углов равны значениям углов в радианной мере. Выразим тангенсы из уравнений (3) и, подставив в уравнение (6), получим формулу сферического зеркала:

Построение изображения предмета в сферическом зеркале

Для построения изображения в сферическом зеркале достаточно использовать два луча из тех, ход которых известен (рис. 162):

  1. луч, параллельный оптической оси, после отражения проходит через ее фокус;
  2. луч, прошедший через фокус зеркала, отражается параллельно оптической оси;
  3. луч, падающий в точку вершины зеркала, отражается под тем же углом;
  4. луч, прошедший через центр кривизны зеркала, отражается вдоль линии падения в обратном направлении.

Алгоритм построения изображения точечного источника света

1. Провести ПОО, указать в точке пересечения с ФП фокус проведенной оси (рис. 163).

2. От источника света S построить луч, параллельный ПОО, до главной плоскости зеркала. Провести отраженный луч через фокус побочной оси.

3. Указать в точке пересечения с лучом, направленным вдоль ГОО, полученное изображение

Вспомните! Изображение мнимое, если пересекаются не сами отраженные лучи, а их продолжения. Изображение предмета действительное, если пересекаются лучи.

Линейное увеличение

Рассчитать изменение линейных размеров тела можно из подобия треугольников (рис. 162):

где H − высота изображения; h − высота предмета; − расстояние от изображения до вершины зеркала; d − расстояние от предмета до вершины зеркала; Г − увеличение.

Физическую величину, равную отношению высоты изображения к высоте предмета, называют линейным увеличением зеркала.

Если то размеры изображения тела увеличиваются; если − уменьшаются. Лучи обратимы, следовательно, если считать, что на рисунке 162 предметом является отрезок то его изображением станет отрезок AB.

Закон преломления света с точки зрения волновой теории

Закон преломления света открыт экспериментально голландским математиком В. Снеллиусом в начале XVII в.

Произведение абсолютного показателя преломления на синус угла падения остается постоянной величиной, являясь «оптическим инвариантом» при переходе света из одной среды в другую.

где — абсолютные показатели сред, – угол падения, – угол преломления.

Рассмотрим преломление двух лучей плоской волны на границе двух сред MN на основе принципа Гюйгенса (рис. 165). Фронт падающей волны в момент, когда луч достигает границы сред MN, обозначен на рисунке отрезком AC. Показатель преломления второй среды больше, чем первой среды Фронт вторичной волны, созданной во второй среде в момент падения луча на границу MN, обозначен отрезком DB. В результате построения получены прямоугольные треугольники с общей стороной AB. В треугольниках угол равен углу падения угол равен углу преломления Выразим сторону AB через отрезки AD и CB, пройденные лучами за один и тот же промежуток времени, получим:

Из формул (3) и (4) следует, что:

Выразим скорость света в средах через абсолютный показатель преломления:

Вспомните! Абсолютный показатель преломления – это физическая величина, показывающая, во сколько раз скорость распространения света в вакууме больше скорости распространения света в данной среде: где n − абсолютный показатель преломления среды, с − скорость света в вакууме, − скорость света в среде. Оптически менее плотная среда обладает меньшим абсолютным показателем преломления.

Подставив формулы (6) в (5), получим:

На основе волновой теории Гюйгенса получен закон преломления Снеллиуса.

Вспомните! Относительный показатель преломления – это физическая величина, которая показывает во сколько раз скорость распространения света в первой среде больше скорости распространения света во второй среде.

Заменим в уравнении (7) отношение абсолютных показателей преломления относительным показателем, получим:

Полное внутреннее отражение света

Если направить луч света из оптически более плотной среды в менее плотную среду, то угол преломления больше угла падения. Наибольшему значению угла преломления, равному 90º, соответствует угол падения он назван предельным углом полного внутреннего отражения.

При падении луча на границу сред под углом, превышающим предельный угол полного внутреннего отражения преломленный луч исчезает, происходит полное отражение света (рис. 166).

Закон преломления для предельного угла примет вид:

Из полученного равенства следует, что предельный угол полного отражения определяется показателем преломления среды в том случае, если второй средой является вакуум или воздух:

Запомните! Закон преломления света:

Отношение синуса угла падения к синусу угла преломления для двух сред есть величина постоянная. Она равна относительному показателю преломления второй среды относительно первой.

Луч падающий, луч преломленный и перпендикуляр восстановленный в точку падения луча к границе раздела двух сред, лежат в одной плоскости.

Преимущества оптоволоконной технологии при передаче световых сигналов

Простейшая оптоволоконная система передачи информации между двумя точками состоит из трех основных элементов: оптического передатчика, оптоволоконного кабеля и оптического приемника.

Оптический передатчик преобразует электрический сигнал в модулированный световой поток, предназначенный для передачи по оптоволокну. В качестве источника света используются светодиоды и полупроводниковые лазеры. Длина волны излучения выбрана с учетом максимальной прозрачности материала волокна и наивысшей чувствительности фотодиодов. Оптические передатчики работают в диапазоне инфракрасных лучей с длиной волны 850, 1300 и 1550 нм.

Оптический приемник преобразует световой сигнал в копию исходного электрического сигнала. В качестве чувствительного элемента оптического приемника используется фотодиод.

Световод (оптоволоконный кабель) − закрытое устройство для направленной передачи света.

Оптоволоконный кабель состоит из одного или нескольких стеклянных волокон со ступенчатым или плавным изменением показателя преломления вдоль радиуса (рис. 167 а). Волокно со ступенчатым профилем показателя преломления состоит из сердцевины, изготовленной из стекла с малыми оптическими потерями, окруженной стеклянной оболочкой с более низким показателем преломления (рис. 167 б). Оптоволокно с плавным профилем состоит из стекла только одного сорта, но оно обработано так, что его показатель преломления плавно уменьшается от центра к поверхности волокна. Такой световод постоянно отклоняет распространяющийся по нему свет к центру (рис. 167 в).

В зависимости от числа волокон различают кабели одножильные, многожильные и многомодовые, которые позволяют распространяться световым волнам по нескольким различным путям, которые называют модами.

В многомодовых волокнах каждая световая волна распространяются под своим углом. Волны по-разному отражаются от оболочки и поступают в приемник в разное время. В одном многомодовом кабеле может быть порядка 80–100 мод. В многожильных кабелях возможно использование нескольких отдельных волокон, диаметр которых колеблется от 8 мкм до 10 мкм, соответствует диаметру одножильных кабелей. Многомодовые и многожильные кабели в сравнении с одножильными кабелями обеспечивают большую пропускную способность на малые расстояния, около 2 метров, на больших дистанциях возникают помехи. Одножильное оптоволокно чаще всего применяется в телекоммуникационных системах большой протяженности.

Оптические кабели имеют ряд преимуществ над обычными проводами и кабелями:

  • могут с высокой скоростью передать значительно большее количество информации;
  • тоньше и легче медных кабелей с такой же пропускной способностью;
  • не подвержены внешним помехам, включая грозовые разряды;
  • практически не взаимодействуют с агрессивными химическими веществами, вызывающими коррозию;
  • не проводят электричество, могут находиться в прямом контакте с высоковольтным электрооборудованием, не несут опасности поражения электрическим током при ремонте;
  • не создают вокруг себя электромагнитного излучения;
  • обеспечивают защиту передаваемой информации, несанкционированное подключение к кабелю легко обнаруживается.

Интересно знать! В настоящее время используются оптоволоконные кабели, позволяющие передавать данные на большие расстояния с пропускной способностью до 100 Гбит/с. Максимальная пропускная способность оптоволоконного кабеля со спектральным уплотнением каналов WDM достигает 9,6 Тбит/с, так как он способен передать данные одновременно по 96 каналам.

Построение изображения в системе линз. Формула тонкой линзы

I. Собирающая и рассеивающая линзы

Линза представляет собой прозрачное тело, ограниченное с двух сторон сферическими поверхностями: (рис. 170 а). Одна из поверхностей может быть плоской, ее можно рассматривать как сферическую поверхность большого радиуса.

Обратите внимание! Если показатель преломления линзы больше показателя преломления среды, то выпуклые линзы фокусируют падающие на них лучи, вогнутые линзы – рассеивают.

II. Ход лучей в собирающей и рассеивающей линзах

Луч 1, параллельный главной оптической оси, проходит через задний фокус линзы (рис. 171);

Луч 2, прошедший через центр линзы, не преломляется (рис. 171);

Луч 3, прошедший через передний фокус линзы, становится параллельным главной оптической оси (рис. 171);

Луч 4, прошедший через центр кривизны одной из сферической поверхностей, проходит через центр кривизны другой поверхности (рис. 171).

Обратите внимание! Зеркала дают изображение в отраженных лучах, а линзы – в проходящих.

III. Побочные оси. Построение лучей с использование побочных осей

Фокусы побочных оптических осей F1 также принадлежат фокальной плоскости и находятся в точках пересечения ПОО с ФП (рис. 175 а). Лучи, падающие на собирающую линзу параллельно побочной оси, проходят через фокус ПОО (рис. 175 б). В рассеивающей линзе в фокусе побочной оси пересекаются продолжения лучей (рис. 175 в).

В том случае, когда предмет представляет собой точечный источник света, находящийся на главной оптической оси, для построения изображения используют побочную ось. На рисунке 176 изображен ход лучей при условии использован луч, параллельный ПОО, и луч, проходящий через центр линзы О. Полученное изображение действительное, находится по другую сторону линзы за двойным фокусом.

Запомните! Побочную ось необходимо ввести для лучей, падающих на линзу под произвольным углом. Она проводится параллельно падающему лучу. В этом случае преломленный луч пройдет через задний фокус побочной оси собирающей линзы (рис. 176). Для рассеивающей линзы необходимо провести преломленный луч таким образом, чтобы его продолжение прошло через передний фокус побочной оси.

IV. Формула тонкой линзы. Оптическая сила линзы. Увеличение линзы

Формула тонкой линзы вам известна из курса физики 8 класса:

где D – оптическая сила линзы. Для собирающей линзы фокус линзы положительный F > 0, для рассеивающей линзы – отрицательный F 1, если изображение уменьшенное, то Г 0, для мнимого предмета d D), т. е. проявляется волновой характер светового излучения. Следует отметить, что дифракция будет наблюдаться на очень больших расстояниях от экрана даже при диаметре диафрагмы

Таким образом, луч — чисто геометрическое понятие. Луч указывает направление, перпендикулярное фронту волны, в котором опа переносит энергию.

Лучи, выходящие из одной точки, называют расходящимися, а собирающиеся в одной точке — сходящимися. Примером расходящихся лучей может служить любой точечный источник света, а примером сходящихся — совокупность лучей, попадающих в зрачок нашего глаза от различных предметов.
Пересекающиеся световые лучи не взаимодействуют друг с другом в рамках геометрической оптики, т. е. «исказить» изображение с помощью других лучей невозможно. Факт независимости распространения световых лучей от наличия (или отсутствия) других лучей устанавливается в следующем законе геометрической оптики.

Закон независимости световых лучей:

  • световые лучи распространяются независимо друг от друга.

Целый ряд оптических явлений (отражение облаков в воде, отражение предметов в зеркальной или любой полированной поверхности и т. д.) способствовали открытию следующего закона геометрической оптики — закона отражения света (рис. 268):

  • угол отражения равен углу падения
  • луч падающий, луч отраженный и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.

Эксперименты показывают, что существуют два вида отражения света: зеркальное и рассеянное. Поверхность, размеры неровностей которой меньше длины световой волны, называют зеркальной. Лучи света, падающие на такую плоскую поверхность параллельным пучком, после отражения остаются параллельными. Такое отражение называют зеркальным (рис. 269).

Поверхность, размеры неровностей которой больше длины световой волны, отражает лучи света по всевозможным направлениям и называется шероховатой, а отраженный свет — рассеянным или диффузным (рис. 270).

Используя закон отражения света, можно построить изображение предмета АВ в плоском зеркале (рис. 271), представляющем собой плоскую отражающую поверхность. Построив ход лучей 1 и 2 от точки А после отражения от зеркала KL, продолжим их до пересечения в точке А’. Аналогичные построения
сделаем для точки В, найдем ее изображение — точку В’. Глазу наблюдателя будет казаться, что лучи вышли из точек А’ и В’, т. е. оттуда, где будет находиться мнимое изображение А’В’ предмета АВ.

В оптике изображение называется действительным, если оно образовано самими лучами (т. е. в данную точку поступает световая энергия), если же изображение образовано не самими лучами, а их продолжениями, то говорят, что изображение мнимое (световая энергия не поступает в данную точку).

Изображение называется прямым, если верх и низ изображения ориентированы аналогично самому предмету. Если же изображение перевернуто, то его называют обратным или перевернутым.

Таким образом, изображение предмета в плоском зеркале — мнимое прямое, в натуральную величину. Оно симметрично предмету относительно плоскости зеркала и находится на таком же расстоянии за плоскостью зеркала, как и сам предмет (см. рис. 271).

Преломление света

Изменение направления распространения луча света при прохождении через границу раздела двух сред называется преломлением света.
Для наблюдения данного явления достаточно поместить карандаш в стакан с водой и посмотреть на него со стороны — карандаш будет казаться «надломленным» (преломленным) (рис. 273), оставаясь при этом совершенно целым.

Первые упоминания о преломлении света в воде и стекле встречаются в труде Клавдия Птолемея «Оптика», вышедшего в свет во II в. нашей эры.
Закон преломления света был экспериментально установлен в 1621 г. голландским ученым Виллебродом Снеллиусом и независимо от него теоретически обоснован в 1637 г. Рене Декартом.

Закон преломления световых лучей:

  • отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред;
  • падающий и преломленный лучи лежат в одной плоскости с перпендикуляром, проведенным в точке падения луча к плоскости границы раздела двух сред

Здесь — абсолютные показатели преломления сред.
Рассмотрим луч, падающий на плоскую границу раздела двух прозрачных сред под некоторым углом (рис. 274).

При этом наряду с отраженным лучом будет существовать и преломленный луч. Он распространяется во второй среде под некоторым углом у в соответствии с законом преломления.

Принцип Ферма

Хотя законы геометрической оптики были открыты экспериментально, однако все они (за исключением закона независимости световых лучей) являются следствием принципа «кратчайшего пути» или «минимального времени», сформулированного в 1679 г. французским математиком Пьером Ферма:
распространение света из одной точки среды в другую происходит по траектории, которой соответствует минимальное время по сравнению с другими возможными траекториями.

При помощи этого принципа Ферма вывел закон преломления света. Из этого принципа также следуют законы прямолинейного распространения и отражения света, т. е. принцип Ферма является наиболее общим принципом геометрической оптики.

Действительно, в однородной прозрачной среде, где скорость света постоянна минимальному времени распространения света между двумя точками соответствует движение по прямой, т. е. приходим к закону прямолинейного распространения света.

При отражении от плоского зеркала в силу симметрии можем сказать, что сумма |АВ| + |ВС| (рис. 275) будет минимальна в случае, когда Это как раз и соответствует закону отражения света.

Впервые данный факт геометрически доказал Герон Александрийский (II в. н. э.) задолго до появления принципа Ферма.

Анализируя время распространения луча между двумя точками при преломлении света, можно показать, что принцип Ферма выполняется и в этом случае, т. е. при движении по «траектории» преломления свету потребуется наименьшее время но сравнению с любой другой возможной «траекторией».

Для законов отражения и преломления выполняется принцип обратимости световых лучей:

  • луч света, распространяющийся по пути отраженного (преломленного) луча, отразившись в точке О от границы раздела сред, распространяется дальше по пути падающего луча. Иными словами можно менять падающий и отраженный (преломленный) лучи местами, т. е., не изменяя хода луча, поменять направление его распространения.

На границе раздела двух прозрачных сред обычно одновременно с преломлением наблюдается отражение волн.

Согласно закону сохранения энергии сумма энергий отраженной и преломленной волн равна энергии падающей волны

Примерный баланс энергий между отраженной и преломленной волнами приведен на рисунке 276.

Как следует из закона преломления, при переходе света из оптически более плотной среды I (с большим абсолютным показателем преломления ) в оптически менее плотную среду II (с меньшим показателем преломления угол преломления становится больше угла падения (рис. 277).

По мере увеличения угла падения, при некотором его значении угол преломления станет т. е. свет не будет попадать во вторую среду.
Энергия преломленной волны при этом станет равной нулю, а энергия отраженной волны будет равна энергии падающей. Следовательно, начиная с этого угла падения вся световая энергия отражается от границы раздела этих сред в среду I.

Это явление называется полным отражением (см. рис. 277). Угол при котором начинается полное отражение, называется предельным углом полного отражения. Он определяется из закона преломления при условии, что угол преломления

Таким образом, при углах падения, больших преломленный луч отсутствует.

Закон преломления света позволяет определять ход лучей в различных оптических системах.

На рисунке 278 показан ход светового луча в плоскопараллельной пластинке толщиной d, находящейся в воздухе. Согласно закону преломления на первой и второй границах раздела для луча, падающего под углом на первую границу,

Здесь — угол преломления на первой границе, — угол падения луча на вторую границу, — угол преломления на второй границе, n — показатель преломления вещества пластинки.

Накрест лежащие углы при параллельных прямых AD и ВК — перпендикулярах к первой и второй параллельным границам — равны, т. е. Следовательно, Откуда следует, что

Таким образом, луч света, проходя через плоскопараллельную пластинку, с обеих сторон которой находится одна и та же среда, смещается параллельно своему начальному направлению. Поэтому все предметы, если смотреть на них сквозь прозрачную плоскопараллельную пластинку под углом, не равным нулю, будут казаться смещенными на некоторое расстояние h. Найдем, от каких параметров пластинки зависит это смещение.

Из треугольника АВС следует, что

Из треугольника ABD находим

Из этих двух соотношений получаем

С учетом закона преломления и тригонометрического тождества находим

Окончательно, смещение h между направлениями входящего и выходящего лучей можно определить из соотношения

Откуда видно, что h при данном угле падения зависит от толщины d пластинки и ее показателя преломления n.

На рисунке 279 показан ход луча через стеклянную призму, находящуюся в воздухе. Грани, через которые проходит луч, называются преломляющими гранями; их ребро — преломляющим ребром, а угол между ними — преломляющим углом призмы. Угол между направлениями входящего и выходящего лучей называется углом отклонения:

Если угол падения на грань призмы и преломляющий угол призмы малы, то малыми будут и углы Поэтому в законах преломления отношение синусов можно заменить отношением углов, выраженных в радианах, т. е. Из геометрических соотношений следует равенство Используя эти соотношения для угла отклонения, находим

Из последнего равенства следует, что, во-первых, чем больше преломляющий угол тем больше угол отклонения лучей призмой; во-вторых, угол отклонения лучей зависит от показателя преломления вещества призмы. А так как показатель преломления зависит от частоты волны n(v), то при падении на призму белого света он будет разлагаться в спектр.

Знание наименьшего угла отклонения лучей призмой позволяет определить показатель преломления вещества, из которого она изготовлена:

Направив пучок лучей белого света на призму, мы обнаружим его сложную структуру: на экране за призмой появится радужная полоска — спектр (рис. 280).

Образование спектра обусловлено тем, что призма, вследствие дисперсии, по-разному преломляет лучи, соответствующие различным длинам волн. Порядок следования лучей в спектре легко запомнить с помощью известной фразы:

  • красный — 770—630 нм каждый
  • oранжевый — 630—590 нм охотник
  • желтый — 590—570 нм желает
  • зеленый — 570—495 нм знать.
  • голубой, синий — 495—435 нм где сидят
  • фиолетовый — 435—390 нм фазаны

Явление дисперсии совместно с полным отражением приводит к образованию радуги, вследствие преломления солнечных лучей на мельчайших водяных капельках во время дождя, к нежелательному «окрашиванию» изображений в оптических системах (хроматическая аберрация) и т. д.

Линза. Построение изображения в линзах

Линза называется собирающей, если после преломления в ней параллель-ный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей.

Как известно, плоское зеркало даст мнимое изображение предмета в натуральную величину. Однако для практических нужд чаще необходимы изображения увеличенные или уменьшенные. Эта задача решается с помощью линз (или криволинейных зеркал).

Линза представляет собой прозрачное тело, ограниченное с двух сторон криволинейными поверхностями. Чаще всего применяются линзы с поверхностями, имеющими сферическую форму (сферические сегменты).
По форме ограничивающих поверхностей различают шесть типов линз. На рисунке 281, а. б показаны условные обозначения линз и типы линз.

Отметим условия, при одновременном выполнении которых линза является собирающей:

  • толщина в центре больше толщины у краев;

  • ее показатель преломления больше показателя преломления окружающей среды.

При невыполнении (или выполнении) только одного из этих условий линза является рассеивающей.

Линза считается тонкой, если ее толщина в центре намного меньше радиусов ограничивающих ее поверхностей. Тонкая линза дает неискаженное изображение только в том случае, если свет монохроматический и предмет достаточно мал, следовательно, лучи распространяются вблизи главной оптической оси. Такие лучи получили название параксиальных.

Рассмотрим основные характеристики линзы (рис. 282, а, б).

Прямая линия, на которой лежат центры обеих сферических поверхностей линзы, называется главной оптической осью.

Точка О линзы, проходя через которую луч не преломляется, называется оптическим центром.

Прямая линия, проходящая через оптический центр линзы, не совпадающая с главной оптической осью, называется побочной оптической осью. Каждая линза имеет только одну главную оптическую ось и бесконечно много побочных осей.

Плоскость, проходящая через оптический центр тонкой линзы перпендикулярно главной оптической оси, называют главной плоскостью линзы.

Точка, в которую собирается параксиальный пучок света после преломления в линзе, распространяющийся параллельно главной оптической оси, называется главным фокусом F линзы. Расстояние OF от оптического центра линзы до се главного фокуса называется фокусным расстоянием линзы.

Плоскость, проходящая через главный фокус перпендикулярно главной оптической оси, называется фокальной плоскостью. Фокальная плоскость собирающей линзы является геометрическим местом точек, в которых пересекаются параллельные лучи, падающие на линзу под любым углом к главной оптической оси.

Пучок света, направленный на собирающую линзу параллельно побочной оптической оси, собирается в побочном фокусе, лежащем в фокальной плоскости.

Обычно для построений в линзах используют три характерных (стандартных) луча (рис. 283, а, б):

  • луч, идущий через оптический центр О линзы, не испытывает преломления;
  • луч, параллельный главной оптической оси линзы, после преломления проходит через ее главный фокус;
  • луч, проходящий через главный фокус линзы, после преломления идет параллельно главной оптической оси.

Для построения изображения в линзе достаточно построить ход двух лучей от каждой точки предмета. Изображение находится в месте пересечения лучей после преломления на поверхностях линзы (действительное изображение) или в месте пересечения продолжений лучей (мнимое изображение).
В зависимости от типа линзы и расстояния до нее можно получать изображения: увеличенные и уменьшенные, прямые и обратные (перевернутые), действительные и мнимые (рис. 284).

Все приведенные примеры построений относились к предметам, которые имели определенные размеры. А как найти построением положение изображения точечного источника света, находящегося на главной оптической оси?

Для этого необходимы два любых луча, один из которых — самый простой, — проходящий не преломляясь через оптический центр линзы. Для построения хода другого пользуются побочной оптической осью. Рассмотрим точечный источник, находящийся на главной оптической оси собирающей линзы (рис. 285). Проведем из точки S произвольный луч SA. Для того чтобы найти ход луча после преломления в линзе, проведем побочную оптическую ось параллельную лучу SA. Нарисуем сечение KL фокальной плоскости линзы.

Точка пересечения побочной оптической оси с фокальной плоскостью KL является побочным фокусом Следовательно, луч SA, преломившись в линзе, должен пройти через побочный фокус Продлевая прямую до пересечения с главной оптической осью, находим точку которая является изображением точечного источника S.

Положение изображения точечного источника, находящегося на главной оптической оси рассеивающей линзы, найдите построением самостоятельно.

Формула тонкой линзы

Между расстояниями от предмета до линзы и от линзы до изображения существует определенная зависимость от фокусного расстояния линзы, называемая формулой линзы.

Выведем формулу тонкой линзы из геометрических соображений, рассматривая ход характерных лучей (рис. 289).

Пусть расстояние от предмета АВ до линзы d, расстояние от линзы до изображения АВ f, фокусное расстояние линзы F, расстояние от предмета до левого фокуса а, расстояние от изображения до правого фокуса а’.
Из рисунка видно, что следовательно,

Поперечным увеличением Г называется отношение линейного размера изображения h’ к линейному размеру предмета h:


Из соотношения (I) следует формула Ньютона:
С учетом того, что получаем формулу линзы:

В 1604 г. в исследовании «Дополнения к Вителло» Кеплер изучал прелом-ление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.

Для практического использования формулы линзы следует твердо запомнить правило знаков:

в случае собирающей линзы действительных источника и изображения величины F, d, f считают положительными; в случае рассеивающей линзы мнимых источника и изображения величины F, d, f считают отрицательными.
Заметим, что предмет или источник является мнимым только в том случае, если на линзу падает пучок сходящихся лучей.

Таким образом, линза с F>0 является собирающей (положительной), а с F 40 не применяются из-за сильных искажений изображения или малости обзора.

Мультимедийный (лазерный) проектор (рис. 292) — оптическое устройство, с помощью которого на экране получают действительное (прямое или обратное) увеличенное изображение, «снятое» с экрана компьютера, телевизора или других источников видеосигнала.

Для формирования изображения в мультимедиа-проекторах используются различные базовые технологии: жидкокристаллическая технология, технология цифровой обработки света или технология формирования цифровых изображений методом отражения.

При формировании цифрового изображения методом отражения источник света 1 при помощи разделяющих призм 2 освещает оптическую матрицу с изображением 3 и при помощи системы проекционных линз 4 передает увеличенное изображение на экран 5 (рис. 293).

Популярность мультимедийных проекторов обусловлен их универсальностью, поскольку помимо компьютерного изображения они поддерживают практически вес существующие стандарты видеозаписей, а также полностью совместимы с форматом телевидения высокой четкости.

Мультимедиа-проекторы активно работают на научных конференциях, вы-
семинарах и т. д., поскольку по размерам изображения и по возможностям его настройки с ними не способны конкурировать ни телевизоры, ни плазменные панели.

Так, например, мультимедиа-проекторы позволяют осуществить обратную проекцию или проекцию изображения на просветный экран, при которой зрители и проекционное оборудование находятся по разные стороны экрана. При такой установке проектора докладчик может находиться непосредственно перед экраном, не заслоняя собой проекцию, а освещение в помещении не так сильно влияет на качество изображения.

Фотоаппарат (рис. 294) — прибор, предназначенный для получения действительных уменьшенных обратных изображений предметов на фотопленке. При этом предметы могут быть расположены на различном удалении от точки съемки.

Фотоаппарат состоит из закрытой светонепроницаемой камеры и системы линз, называемых объективом (О). С помощью перемещения объектива добиваются наводки на резкость, при которой изображение предмета АВ формируется на фотопленке. В противном случае изображение А’В’ получается нечетким (размытым). Количество световой энергии, поступающей на пленку, определяется размерами диафрагмы и временем открытия затвора (выдержкой).

Сегодня на смену пленочным приходят электронные (цифровые) фотокамеры, в которых изображение записывается не на фотопленку, а на специальный чувствительный элемент (матрицу), с которого информация считывается и хранится в электронном (цифровом) виде, как в памяти компьютера. К достоинствам электронных камер можно отнести возможность «мгновенного» просмотра сделанной фотографии, восстановление ресурсов памяти после переписывания информации в компьютер, высокий темп съемки (10 и более кадров в секунду).

Зрение человека не в состоянии фиксировать очень быстрые и очень медленные изменения положения объекта. Фотоаппарат благодаря возможности фотографировать с различными выдержками от тысячных долей секунды до нескольких секунд позволяет хронометрировать события, визуально «неулавливаемые».

Глаз, очки

Основную часть информации (примерно 90 %) об окружающем мире мы получаем с помощью органов зрения.

Глаз представляет собой сложную оптическую систему, подобную фотоаппарату (рис. 295).

Преломляющая система глаза подобна объективу фотоаппарата, а сетчатка — фоточувствительному слою фотопленки.

У глаза имеется радужная оболочка (окрашенная часть глаза), которая играет роль диафрагмы и автоматически регулирует количество попадающего в глаз света. Зрачок — отверстие в радужной оболочке, через которое проходит свет.

Сетчатка играет роль светочувствительной пленки, находится на задней поверхности глаза. Она состоит из «палочек» (нервные волокна) и «колбочек»
(рецепторы), которые преобразуют световую энергию в электрические сигналы, распространяющиеся по нервным волокнам. Днем свет воспринимается колбочками, а ночью — палочками. Днем мы отчетливо видим мелкие предметы и различаем их цвет. Слабо освещенные предметы (например, ночью) мы видим только в черно-белых тонах (бесцветными). Недаром говорят, что «ночью все кошки серы». Желтое пятно — область диаметром около 0,25 мм — находится в центре сетчатой оболочки, в которой достигается особая острота зрения и наиболее четко различаются цвета. Слепое пятно — место входа глазного нерва — это область сетчатки, которая не участвует в формировании изображения. Роговица — служит предохранительным покрытием и является первой поверхностью, преломляющей свет. Хрусталик — это эластичное линзоподобное тело, которое осуществляет настройку нашего зрения на различные расстояния. В оптической системе глаза фокусировка изображения на сетчатку называется аккомодацией (от латинского слова commodus — удобный). У человека аккомодация происходит за счет увеличения или уменьшения выпуклости хрусталика, которое осуществляется с помощью цилиарных мышц. При этом изменяется оптическая сила глаза.
Точка, видимая глазом при расслабленной цилиарной мышце, называется дальней точкой, а точка, видимая при максимальном напряжении этой мышцы, — ближней точкой.

Расстояние наилучшего зрения — это расстояние от предмета до глаза, при котором глаз не устает и угол зрения достаточно велик. Размер изображения на сетчатке (рис. 296) определяется углом зрения с вершиной в оптическом центре глаза и лучами, направленными на крайние точки предмета.

От бесконечно удаленного предмета в глаз попадает пучок параллельных лучей. В этом случае аккомодации не требуется. Если предмет приближается, то лучи становятся расходящимися. Для того чтобы сделать их снова параллельными, необходимо изменить оптическую силу глаза так, чтобы его фокусное расстояние совпало с расстоянием до предмета, т. е. F=d. В этом случае оптическая система глаза соберет параллельные лучи на сетчатке.

Оптическую силу аккомодационной добавки или аккомодации найдем из условия

Зрение человека с нормальным зрением характеризуется понятием «нормальный глаз», т. е. расстояние наилучшего зрения около 25 см, а предел зрения (дальняя точка) находится на бесконечности.

Для нормального глаза преломляющая сила хрусталика без аккомодации D= 19,11 дптр, а при максимальной аккомодации — = 33,06 дптр; оптическая сила всего глаза, соответственно, D = 58,64 дптр и = 70,57 дптр. Пользуясь этими данными, можно определить минимальное расстояние, на котором нормальный глаз еще может ясно видеть предмет. Максимально возможная аккомодация обеспечивает изменение оптической силы нормального глаза на = 11,93 дптр. Этому изменению оптической силы соответствует минимальное расстояние = 8,4 см. Следует отметить, что такая аккомодация возможна только в молодости (до 20 лет).

С возрастом возможность аккомодации быстро уменьшается в основном из-за уплотнения хрусталика, теряющего способность достаточно сжиматься. Пожилой человек не может отчетливо видеть близкие предметы, а также различать буквы в газетах и книгах. К пятидесяти годам расстояние наилучшего зрения увеличивается в среднем до 50 см.
С возрастом, по болезни или при несоблюдении гигиены могут появиться дефекты зрения. Два наиболее распространенных дефекта — близорукость и дальнозоркость.

Близорукость (миопия) — дефект зрения, при котором глаз видит удаленные предметы не резко, а расплывчато (предел зрения не равен бесконечности). Изображения предметов при этом не попадают на сетчатку глаза, а фокусируются перед ней (точка М на рис. 297, а). Для исправления этого дефекта зрения используют очки с рассеивающими линзами (рис. 297, б). Поскольку оптическая сила этих линз отрицательна, то в повседневной жизни такие очки называют отрицательными.

Дальнозоркость (гиперопия) — дефект зрения, при котором глаз не в состоянии видеть резко близкие объекты, хотя удаленные предметы он видит хорошо. Изображения предметов при дальнозоркости получаются за сетчаткой (точка Р на рис. 298, а), и для коррекции зрения необходимо применять собирающие линзы (рис. 298, б), оптическая сила которых положительна (положительные очки).

Оптические явления в атмосфере

Атмосфера нашей планеты представляет собой достаточно интересную оптическую систему, показатель преломления которой уменьшается с высотой вследствие уменьшения плотности воздуха. Таким образом, земную атмосферу можно рассматривать как «линзу» гигантских размеров, повторяющую форму Земли и имеющую монотонно изменяющийся показатель преломления.

Это обстоятельство приводит к появлению целого ряда оптических явлений в атмосфере, обусловленных преломлением (рефракцией) и отражением (реф-лекцией) лучей в ней.

Рассмотрим некоторые наиболее существенные оптические явления в атмосфере.

Атмосферная рефракция — явление искривления световых лучей при прохождении света через атмосферу.
С высотой плотность воздуха (значит, и показатель преломления) убывает. Представим себе, что атмосфера состоит из оптически однородных горизонтальных слоев, показатель преломления в которых меняется от слоя к слою (рис. 299).

При распространении светового луча в такой системе он будет в соответствии с законом преломления «прижиматься» к перпендикуляру к границе слоя. Но плотность атмосферы уменьшается не скачками, а непрерывно, что приводит к плавному искривлению и повороту луча на угол а при прохождении атмосферы.

В результате атмосферной рефракции мы видим Луну, Солнце и другие звезды несколько выше того места, где они находятся на самом деле.

По этой же причине увеличивается продолжительность дня (в наших широтах на 10—12 мин), сжимаются диски Луны и Солнца у горизонта. Интересно, что максимальный угол рефракции составляет 35′ (для объектов у линии горизонта), что превышает видимый угловой размер Солнца (32′).

Из этого факта следует: в тот момент, когда мы видим, что нижний край светила коснулся линии горизонта, на самом деле солнечный диск находится уже под горизонтом (рис. 300).

Мерцание звезд также связано с астрономической рефракцией света. Давно было подмечено, что мерцание наиболее заметно у звезд, находящихся вблизи линии горизонта. Воздушные потоки в атмосфере изменяют плотность воздуха с течением времени, что приводит к кажущемуся мерцанию небесного светила. Космонавты, находящиеся на орбите, никакого мерцания не наблюдают.

В жарких пустынных или степных районах и в полярных областях сильный прогрев или охлаждение воздуха у земной поверхности приводит к появлению миражей: благодаря искривлению лучей становятся видимыми и кажутся близко расположенными предметы, которые на самом деле расположены далеко за горизонтом.

Иногда подобное явление называется земной рефракцией. Возникновение миражей объясняется зависимостью показателя преломления воздуха от температуры. Различают нижние и верхние миражи.

Нижние миражи можно увидеть в жаркий летний день на хорошо прогретой асфальтовой дороге: нам кажется, что впереди на ней есть лужи, которых на самом деле нет. В данном случае мы принимаем за «лужи» зеркальное отражение лучей от неоднородно разогретых слоев воздуха, находящихся в непосредственной близости от «раскаленного» асфальта.

Верхние миражи отличаются значительным разнообразием: в одних случаях они дают прямое изображение (рис. 301, а), в других — перевернутое (рис. 301, б), могут быть двойными и даже тройными. Эти особенности связаны с различными зависимостями температуры воздуха и показателя преломления от высоты.

Атмосферные осадки приводят к появлению в атмосфере эффектных оптических явлений. Так, во время дождя удивительным и незабываемым зрелищем является образование радуги, которое объясняется явлением различного преломления (дисперсии) и отражения солнечных лучей на мельчайших капельках в атмосфере (рис. 302).

В особо удачных случаях мы можем увидеть сразу несколько радуг, порядок следования цветов в которых взаимообратен.

Световой луч, участвующий в формировании радуги, испытывает два преломления и многократные отражения в каждой дождевой капле. В данном случае, несколько упрощая механизм образования радуги, можем сказать, что сферические дождевые капельки играют роль призмы в опыте Ньютона по разложению света в спектр.

Вследствие пространственной симметрии радуга видна в виде полуокружности с углом раствора около 42°, при этом наблюдатель (рис. 303) должен находиться между Солнцем и каплями дождя, спиной к Солнцу.

Преломление света в кристалликах льда, сопровождающееся разложением в спектр, приводит к появлению сравнительно редкого и не менее красивого оптического явления гало (рис. 304).

Гало проявляется в виде кругов (иногда столбов, крестов) вокруг Солнца и Луны. Для появления яркого гало необходимо достаточное количество ледяных кристаллов правильной формы.

Разнообразие цветов в атмосфере объясняется закономерностями рассеяния света на частичках различных размеров. Вследствие того, что синий цвет рассеивается сильнее, чем красный, — днем, когда Солнце находится высоко над горизонтом, мы видим небо голубым. По этой же причине вблизи линии горизонта становится красным и не таким ярким, как в зените. Появление цветных облаков также связано с рассеянием света на частичках различных размеров в облаке.

Основные формулы в геометрической оптике

Предельный угол полного отражения:

Формула тонкой линзы:


Оптическая сила линзы:


Поперечное увеличение:

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Фотометрия и световой поток
  • Освещенность в физике
  • Закон прямолинейного распространения света
  • Законы отражения света
  • Оптические приборы в физике
  • Оптика в физике
  • Волновая оптика в физике
  • Квантовая оптика в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://sprashivalka.com/tqa/q/4821446

http://www.evkova.org/geometricheskaya-optika-v-fizike