Составить уравнение параболы и ее директрисы

Парабола: формулы, примеры решения задач

Определение параболы. Параболой называется множество всех точек плоскости, таких, каждая из которых находится на одинаковом расстоянии от точки, называемой фокусом, и от прямой, называемой директрисой и не проходящей через фокус.

Каноническое уравнение параболы имеет вид:

,

где число p, называемое параметром параболы, есть расстояние от фокуса до директрисы.

На чертеже линия параболы — бордового цвета, директриса — ярко-красного цвета, расстояния от точки до фокуса и директрисы — оранжевого.

В математическом анализе принята другая запись уравнения параболы:

то есть ось параболы выбрана за ось координат. Можно заметить, что ax² — это квадратный трёхчлен ax² + bx + c , в котором b = 0 и c = 0 . График любого квадратного трёхчлена, то есть левой части квадратного уравнения, будет параболой.

Фокус параболы имеет координаты

Директриса параболы определяется уравнением .

Расстояние r от любой точки параболы до фокуса определяется формулой .

Для каждой из точек параболы расстояние до фокуса равно расстоянию до директрисы.

Пример 1. Определить координаты фокуса параболы

Решение. Число p расстояние от фокуса параболы до её директрисы. Начало координат в данном случае — в роли любой точки, расстояния от которой от фокуса до директрисы равны. Находим p:

Находим координаты фокуса параболы:

Пример 2. Составить уравнение директрисы параболы

Решение. Находим p:

Получаем уравнение директрисы параболы:

Пример 3. Составить уравнение параболы, если расстояние от фокуса до директрисы равно 2.

Решение. Параметр p — это и есть данное расстояние от фокуса до директрисы. Подставляем и получаем:

Траектория камня, брошенного под углом к горизонту, летящего футбольного мяча или артиллерийского снаряда будет параболой (при отсутствии сопротивления воздуха). Зона достижимости для пущенных камней вновь будет параболой. В данном случае речь идёт об огибающей кривой траекторий камней, выпущенных из данной точки под разными углами, но с одной и той же начальной скоростью.

Парабола обладает следующим оптическим свойством: все лучи, исходящие из источника света, находящегося в фокусе параболы, после отражения оказываются направленными параллельно её оси. Это свойство параболы используется при изготовлении прожекторов, автомобильных фар, карманных фонариков, зеркала которых имеют вид параболоидов вращения (фигур, получающихся при вращении параболы вокруг оси). Пучок параллельных лучей, двигающийся вдоль оси параболы, отражаясь, собирается в её фокусе.

Директриса параболы

Вы будете перенаправлены на Автор24

Директрисой параболы называют такую прямую, кратчайшее расстояние от которой до любой точки $M$, принадлежащей параболе точно такое же, как и расстояние от этой же точки до фокуса параболы $F$.

Рисунок 1. Фокус и директриса параболы

Основные понятия параболы

Отношение расстояний от точки $M$, лежащей на параболе, до этой прямой и от этой же точки до фокуса $F$ параболы называют эксцентриситетом параболы $ε$.

Чтобы найти эксцентриситет параболы, достаточно воспользоваться следующей формулой из определения эксцентриситета: $ε =\frac$, где точка $M_d$ — точка пересечения перпендикуляра, опущенного из точки $M$ c прямой $d$.

Каноническая парабола задается уравнением вида $y^2 = px$, где $p$ обязательно должно быть больше нуля.

Более часто приходится иметь дело с параболой, вершина которой не находится в точке начала координатных осей, и тогда уравнение параболы приобретает следующий вид:

$y = ax^2 + bx + c$, при этом коэффициент $a$ не равен нулю.

Чтобы найти директрису такой параболы, необходимо от такой формы перейти к канонической, ниже в примерах показано, как это сделать.

Расстояние от фокуса до директрисы параболы называется её фокальным параметром $p$. Уравнение директрисы канонической параболы имеет следующий вид: $x=-p/2$

Алгоритм составления уравнения директрисы параболы, заданной не каноническим уравнением

Готовые работы на аналогичную тему

Чтобы составить уравнение директрисы параболы, вершина которой не находится на пересечении осей координат, достаточно воспользоваться следующим алгоритмом:

  1. Перенесите все слагаемые с $y$ в левую часть уравнения, а с $x$ — в правую.
  2. Упростите полученное выражение.
  3. Введите дополнительные переменные чтобы прийти к каноническому виду уравнения.

Составьте уравнение директрисы параболы, описанной уравнением $4x^2 + 24 x – 4y + 36 = 0$

Переносим все слагаемые с $y$ в левую часть и избавляемся от множителя, получаем:

$y^2 = x^2 + 6x – y + 9$

Приводим в форму квадрата:

Вводим дополнительные переменные $t = x + 3$ и $y = z$

  • Получаем следующее уравнение: $t^2 = z$
  • Выражаем $p$ из канонического уравнения параболы, получаем $p = \frac<2x>$, следовательно, в нашем случае $p = \frac<1><2>$.
  • Уравнение директрисы приобретает следующий вид: $t = -\frac<1><4>\cdot t$. Подставляем $t$ и получаем следующее уравнение директрисы $x = -3\frac<1><4>$.
  • Получи деньги за свои студенческие работы

    Курсовые, рефераты или другие работы

    Автор этой статьи Дата последнего обновления статьи: 09 12 2021

    Парабола

    Парабола, её форма, фокус и директриса.

    Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
    $$
    y^<2>=2px\label
    $$
    при условии \(p > 0\).

    Из уравнения \eqref вытекает, что для всех точек параболы \(x \geq 0\). Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

    Форма параболы известна из курса средней школы, где она встречается в качестве графика функции \(y=ax^<2>\). Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством \(2p=a^<-1>\).

    Фокусом параболы называется точка \(F\) с координатами \((p/2, 0)\) в канонической системе координат.

    Директрисой параболы называется прямая с уравнением \(x=-p/2\) в канонической системе координат (\(PQ\) на рис. 8.11).

    Рис. 8.11. Парабола.

    Свойства параболы.

    Расстояние от точки \(M(x, y)\), лежащей на параболе, до фокуса равно
    $$
    r=x+\frac

    <2>.\label
    $$

    Вычислим квадрат расстояния от точки \(M(x, y)\) до фокуса по координатам этих точек: \(r^<2>=(x-p/2)^<2>+y^<2>\) и подставим сюда \(y^<2>\) из канонического уравнения параболы. Мы получаем
    $$
    r^<2>=\left(x-\frac

    <2>\right)^<2>+2px=\left(x+\frac

    <2>\right)^<2>.\nonumber
    $$
    Отсюда в силу \(x \geq 0\) следует равенство \eqref.

    Заметим, что расстояние от точки \(M\) до директрисы также равно
    $$
    d=x+\frac

    <2>.\nonumber
    $$

    Следовательно, мы можем сделать следующий вывод.

    Для того чтобы точка \(M\) лежала на параболе, необходимо и достаточно, чтобы она была одинаково удалена от фокуса и от директрисы этой параболы.

    Докажем достаточность. Пусть точка \(M(x, y)\) одинаково удалена от фокуса и от директрисы параболы:
    $$
    \sqrt<\left(x-\frac

    <2>\right)^<2>+y^<2>>=x+\frac

    <2>.\nonumber
    $$

    Возводя это уравнение в квадрат и приводя в нем подобные члены, мы получаем из него уравнение параболы \eqref. Это заканчивает доказательство.

    Параболе приписывается эксцентриситет \(\varepsilon=1\). В силу этого соглашения формула
    $$
    \frac=\varepsilon\nonumber
    $$
    верна и для эллипса, и для гиперболы, и для параболы.

    Уравнение касательной к параболе.

    Выведем уравнение касательной к параболе в точке \(M_<0>(x_<0>, y_<0>)\), лежащей на ней. Пусть \(y_ <0>\neq 0\). Через точку \(M_<0>\) проходит график функции \(y=f(x)\), целиком лежащий на параболе. (Это \(y=\sqrt<2px>\) или же \(y=-\sqrt<2px>\), смотря по знаку \(y_<0>\).) Для функции \(f(x)\) выполнено тождество \((f(x))^<2>=2px\), дифференцируя которое имеем \(2f(x)f'(x)=2p\). Подставляя \(x=x_<0>\) и \(f(x_<0>)=y_<0>\), находим \(f'(x_<0>)=p/y_<0>\) Теперь мы можем написать уравнение касательной к параболе
    $$
    y-y_<0>=\frac

    >(x-x_<0>).\nonumber
    $$
    Упростим его. Для этого раскроем скобки и вспомним, что \(y_<0>^<2>=2px_<0>\). Теперь уравнение касательной принимает окончательный вид
    $$
    yy_<0>=p(x+x_<0>).\label
    $$

    Заметим, что для вершины параболы, которую мы исключили, положив \(y_ <0>\neq 0\), уравнение \eqref превращается в уравнение \(x=0\), то есть в уравнение касательной в вершине. Поэтому уравнение \eqref справедливо для любой точки на параболе.

    Касательная к параболе в точке \(M_<0>\) есть биссектриса угла, смежного с углом между отрезком, который соединяет \(M_<0>\) с фокусом, и лучом., выходящим из этой точки в направлении оси параболы (рис. 8.12).

    Рассмотрим касательную в точке \(M_<0>(x_<0>, y_<0>)\). Из уравнения \eqref получаем ее направляющий вектор \(\boldsymbol(y_<0>, p)\). Значит, \((\boldsymbol, \boldsymbol_<1>)=y_<0>\) и \(\cos \varphi_<1>=y_<0>/\boldsymbol\). Вектор \(\overrightarrow>\) имеет компоненты \(x_<0>=p/2\) и \(y_<0>\), а потому
    $$
    (\overrightarrow>, \boldsymbol)=x_<0>y_<0>-\frac

    <2>y_<0>+py_<0>=y_<0>(x_<0>+\frac

    <2>).\nonumber
    $$
    Но \(|\overrightarrow>|=x_<0>+p/2\). Следовательно, \(\cos \varphi_<2>=y_<0>/|\boldsymbol|\). Утверждение доказано.

    Заметим, что \(|FN|=|FM_<0>|\) (см. рис. 8.12).


    источники:

    http://spravochnick.ru/matematika/parabola/direktrisa_paraboly/

    http://univerlib.com/analytic_geometry/second_order_lines_and_surfaces/parabola/