Составить уравнение плоскости через прямую параллельно вектору

Уравнение плоскости, проходящей через данную прямую параллельно другой прямой онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через данную прямую параллельно другой прямой − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2, которые не параллельны:

.(1)
.(2)

Задача заключается в построении уравнения плоскости α, проходящей через прямую L1 параллельно прямой L2(Рис.1).

Прамая L1 должна лежать на искомой плоскости α, следовательно точка M1 должна нежать на плоскости α.

Уравнение плоскости можно записать формулой

Ax+By+Cz+D=0.(3)

и поскольку M1(x1, y1, z1) принадлежит этой плоскости, то справедливо следующее равенство:

Ax1+By1+Cz1+D=0.(4)

Для того, чтобы плоскость α проходила через прямую L1, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:

Am1+Bp1+Cl1=0(5)

Для того, чтобы плоскость α была параллельна прямой L2, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q2 прямой L2, т.е. скалярное произведение этих векторов должен быть равным нулю:

Am2+Bp2+Cl2=0(6)

Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:

(7)

Решив однородную систему линейных уравнений (7) найдем частное решение. (как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L1 параллельно прямой L2.

Пример 1. Найти уравнение плоскости α, проходящей через прямую L1:

(8)

паралленьно другой прямой L2 :

(9)

Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(1, 1, 5) и нормальный вектор плоскости n=<A, B, C> перпендикулярна направляющему вектору q1=<m1, p1, l1>= <1, 1, −3>прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

(10)

а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:

(11)

Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:

(12)
(13)
(14)
(15)

Представим эти уравнения в матричном виде:

(16)

Решим систему линейных уравнений (16) отностительно A, B, C, D:

(17)

Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n=<A, B, C>= <−13/24,1/6,−1/8>то она может быть представлена формулой:

Ax+By+Cz+D=0(18)

Подставляя значения A,B,C,D в (17), получим:

(18)

Уравнение плоскости можно представить более упрощенном виде, умножив на число −24:

13x−4y+3z−24=0(19)

Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (19).

Пример 2. Найти уравнение плоскости α, проходящей через прямую L1:

(20)
q1=<m1, p1, l1>=
q2=<m2, p2, l2>=

Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(−2, 0, 1) и нормальный вектор плоскости n=<A, B, C> перпендикулярна направляющему вектору q1=<m1, p1, l1>= <5, −8, 3>прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

Ax1+By1+Cz1+D=0(22)

а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:

(23)

Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:

(24)
A(−2)+B·0+C·1+D=0,(25)
A·5+B(−8)+C·3=0,(26)
A·1+B·1+C·1=0,(27)

Представим эти уравнения в матричном виде:

(28)

Решим систему линейных уравнений (28) отностительно A, B, C, D:

(29)

Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n=<A, B, C>= <11/35,2/35,−13/35>то она может быть представлена формулой:

Ax+By+Cz+D=0(30)

Подставляя значения A,B,C,D в (30), получим:

(31)

Уравнение плоскости можно представить более упрощенном виде, умножив на число 35:

11x+2y−13z+35=0(32)

Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (32).

Составить уравнение плоскости проходящей через прямую параллельно вектору

Уравнение плоскости, проходящей через данную прямую параллельно другой прямой онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через данную прямую параллельно другой прямой − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2, которые не параллельны:

.(1)
.(2)

Задача заключается в построении уравнения плоскости α, проходящей через прямую L1 параллельно прямой L2(Рис.1).

Прамая L1 должна лежать на искомой плоскости α, следовательно точка M1 должна нежать на плоскости α.

Уравнение плоскости можно записать формулой

Ax+By+Cz+D=0.(3)

и поскольку M1(x1, y1, z1) принадлежит этой плоскости, то справедливо следующее равенство:

Ax1+By1+Cz1+D=0.(4)

Для того, чтобы плоскость α проходила через прямую L1, нормальный вектор плоскости n= должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:

Am1+Bp1+Cl1=0(5)

Для того, чтобы плоскость α была параллельна прямой L2, нормальный вектор плоскости n= должен быть ортогональным направляющему вектору q2 прямой L2, т.е. скалярное произведение этих векторов должен быть равным нулю:

Am2+Bp2+Cl2=0(6)

Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:

(7)

Решив однородную систему линейных уравнений (7) найдем частное решение. (как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L1 параллельно прямой L2.

Пример 1. Найти уравнение плоскости α, проходящей через прямую L1:

(8)

паралленьно другой прямой L2 :

(9)

Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(1, 1, 5) и нормальный вектор плоскости n= перпендикулярна направляющему вектору q1= = прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

(10)

а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:

(11)

Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:

(12)
(13)
(14)
(15)

Представим эти уравнения в матричном виде:

(16)

Решим систему линейных уравнений (16) отностительно A, B, C, D:

(17)

Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n= = то она может быть представлена формулой:

Ax+By+Cz+D=0(18)

Подставляя значения A,B,C,D в (17), получим:

(18)

Уравнение плоскости можно представить более упрощенном виде, умножив на число −24:

13x−4y+3z−24=0(19)

Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (19).

Пример 2. Найти уравнение плоскости α, проходящей через прямую L1:

(20)
q1= =
q2= =

Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(−2, 0, 1) и нормальный вектор плоскости n= перпендикулярна направляющему вектору q1= = прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

Ax1+By1+Cz1+D=0(22)

а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:

(23)

Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:

(24)
A(−2)+B·0+C·1+D=0,(25)
A·5+B(−8)+C·3=0,(26)
A·1+B·1+C·1=0,(27)

Представим эти уравнения в матричном виде:

(28)

Решим систему линейных уравнений (28) отностительно A, B, C, D:

(29)

Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n= = то она может быть представлена формулой:

Ax+By+Cz+D=0(30)

Подставляя значения A,B,C,D в (30), получим:

(31)

Уравнение плоскости можно представить более упрощенном виде, умножив на число 35:

11x+2y−13z+35=0(32)

Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (32).

Задача 10639 Напишите уравнение плоскости, проходящей.

Условие

Напишите уравнение плоскости, проходящей через прямую, заданную как линия пересечения плоскостей 22х+4у-15z-83=0 и 26х-4у-9z-37=0, и параллельной вектору а= .

Решение

vector — один из направляющих векторов прямой

Найдем точку, принадлежащую двум плоскостям.Принимаем х=0
Тогда будем иметь систему уравнений
; vector и vector — компланарны.
Определитель третьего порядка, составленный из координат этих векторов равен 0
(x-0)*(2*4-1*2)-(y-2)*(1*4-3*2)+(z+5)*(1*1-3*2)=0
6x+2y-4-5z-25=0
6x+2y-5z-29=0

О т в е т. 6x+2y-5z-29=0

Как был найден нормальный вектор искомой плоскости?

Общее уравнение плоскости

Время чтения: 34 минуты

Пространственная геометрия не сложнее обычной. Данная тема включает изучение науки о векторах и подробного понимания обычной геометрической науки.

В этой статье будем рассматривать общие уравнения плоскости. Также разберем практические примеры, проанализируем неполное общее уравнение плоскости и проходящих прямых линий.

Что называют общим уравнением плоскости

Поговорим об уравнении плоскости для трехмерного пространства.

Плоскость в трехмерном пространстве

Разбираясь в чертежах, необходимо знать стандартные обозначения.

Все геометрические плоскости обычно прописывают прописными буквами греческого алфавита, а прямые обозначают большими буквами. Иногда для обозначения плоскости используют греческий алфавит, но с подстрочными индексами снизу. Чтобы изобразить плоскость, необходимо нарисовать параллелограмм, который создаст впечатление плоскости в пространстве.

Поскольку плоскость является бесконечной структурой, мы сможем отобразить лишь ее небольшой кусок. Поэтому вокруг параллелограмма изображают неровный овал, произвольной формы.

В реальности плоскости могут быть расположены в любом произвольном порядке, иметь любой наклон или угол.

Если имеется прямоугольная система координат, расположенная в трехмерном пространстве, то в уравнении будут 3 неизвестных. Чтобы добиться равенства, нужно поставить в уравнение координаты точки, которая расположена именно в данной плоскости.

Если будут поставлены координаты другой точки, не из данной плоскости, тождество не получится.

Представим, что в 3-х мерном изображении и прям-ной координатной системы Oxyz общее уравнение плоскости, проходящей через две линии, имеет 3 неизвестных: x, yes и z. Они удовлетворяют координатам плоскости.

Значит, что при использовании этих данных для каждой из точек, лежащей на плоскости, обязательно должно получиться равенство. Если равенства нет, то точка к плоскости не относится.

Для записи общего уравнения плоскости через точку, необходимо вспомнить определение прямой линии, перпендикулярной заданной плоскости.

Каждая прямая будет перпендикулярной к плоскости, если она перпендикулярна относительно прямой, принадлежащей данной плоскости. Это значит, что каждый нормальный вектор, соответствующий исходной плоскости, будет перпендикуляром к нулевому вектору, принадлежащему плоскости. Это является доказательством теоремы, которая будет определять вид общего уравнения плоскости.

Это значит, что каждый нормальный вектор, соответствующий исходной плоскости, будет перпендикуляром к нулевому вектору, принадлежащему плоскости. Это является доказательством теоремы, которая будет определять вид общего уравнения плоскости.

Уравнение для плоскости, которая проходит через 3 точки

Если 3-мерном пространстве дана прямоугольная к-ная система, она обозначена обычно Oxyz.

Тогда уравнение, где данные a, b и C являются действительными числами больше нуля, именуется ур-ем плоскости на отрезки.

При абсолютном значении чисел a, b и с, они будут равны длине отрезков, обрезанных плоскостью по осям координат. Буквенные значения демонстрируют положительное или отрицательное направление линейных сегментов относительно оси координат.

Чтобы составить общее уравнение для исходной плоскости, можно применить следующую теорему.

Любое уравнение, имеющее стандартный вид, имеет действительные значения A, b, C и D, которые не должны быть равны нулю. Эти данные определяют исходную плоскость в системе координат Oxyz, расположенной в 3-мерном пространстве.

Эта теорема содержит в себе 2 части:

  1. Сначала получаем общее уравнение для плоскости, которая будет проходить через точку и саму плоскость.
  2. Затем мы доказываем, что данное уравнение можно использовать для действительных чисел, чтобы доказать, что оно будет определять плоскость V, Z и D.

Доказательство 1 части:

  1. Так как значения чисел A, V и Z не будут равны нулю одновременно, значит есть определенная точка, координаты которой будут соответствовать исходному уравнению, то есть выдавать верное равенство.
  2. Далее вычитаем правую и левую части полученного уравнения из данного уравнения. Получается уравнение, которое будет эквивалентно исходному.
  3. Далее необходимо будет доказать, что полученное уравнение будет определять именно плоскость в данной системе координат 3-мерного пространства и найти общее уравнение для этой плоскости.

Главным условием для перпендикулярности 2 векторов является их равенство. То есть, когда координаты удовлетворяют уравнению, то векторы будут перпендикулярны и наоборот. При верном равенстве набор точек будет обуславливать плоскость, проходящую через эту точку.

Полученное уравнение будет определять плоскость, расположенную в 3-мерном пространстве. Также оно будет полностью соответствовать для общего уравнения плоскости, которая проходит через три точки.

Из сказанного следует, что любое уравнение, эквивалентное исходному, будет определять одну и ту же плоскость. Мы доказали 1 часть теоремы.

Доказательство 2 части теоремы:

Когда имеем плоскость, проходящую через точку, вектор которой нормален, мы можем доказать, что в прям-ной координатной системе Oxyz ее задают с помощью данного основного уравнения.

Если взять любую точку данной системы координат, то векторы будут перпендикулярны, а произведение будет равно нулю.

После принятия данного понятия, уравнение снова изменится и будет определять нашу плоскость.

Вывод: если уравнения эквивалентны, то они определяют одинаковую плоскость. Мы доказали теорему.

Данный обзор будет полезен при решении математических задач, а также в аналитической геометрии.

Общее уравнение плоскости в линейных сечениях и ее вид

Принятое общее уравнение плоскости обычно имеет следующий вид: A x+B y+C z+D= Ax+By+Cz+D = 0.

Оно в основном используется только для 3-мерного пространства и прям-ной координатной системы.

Если задано общее уравнение плоскости, и имеется действительное число, неравное нулю. Оно может задать определенную плоскость, совпадающую с исходной, определяемой уравнением выше и определит точки трехмерного пространства.

Допускаем, что исходная прямоугольная координатная система задается в 3-мерном пространстве Oxyz.

Значит уравнение с действительными ненулевыми данными a, b и C — это уравнение плоскости на отрезки. Эти абсолютные значения a, b и C будут равны длине отрезков, которые ограничены исходной плоскостью.

Обозначения a, б и C будут демонстрировать направление линейных сегментов относительно осей координат. Поэтому координаты точек будут удовлетворять формуле общего уравнения плоскости.

В этой координатной системе плоскость и уравнение полностью связаны между собой, при том условии, что плоскость соответствует основному уравнению, приведенному выше.

Рассмотрим пример, соответствующий данному утверждению.

  1. Если задана плоскость в 3-мерном пространстве и она отвечает уравнению 4x+5y–5z+20= 4x+5y–5 z+ 0 = 0, то это является описанием множества точек, изображающих данную плоскость.
  2. Если точка находится на исходной плоскости, то можно поставить координаты этой точки в уравнение и получить абсолютное равенство.

Прямые в пространстве

Рассмотрим признаки параллельности прямых относительно заданной плоскости в пространстве:

  • Если 2 прямые линии в исходном пространстве параллельны, то они будут лежать в одной плоскости, поэтому пересекаться не могут.
  • Когда 2 линии пересекаются в пространстве, значит они не принадлежат к одной плоскости.
  • Когда прямая линия лежит на заданной плоскости, а другая пересекает данную плоскость в определенной точке, значит они будут пересекаться.
  • Прямые параллельны, если они не имеют общих точек соприкосновения.
  • Когда прямая не лежит на исходной плоскости, но параллельна относительно прямой, лежащей на этой плоскости, то они полностью параллельны.

Отличительные черты плоскости

Существует несколько отличительных качеств плоскости и ее параллельных линий:

  • Когда плоскость имеет линию (прямую) и она параллельна относительно другой плоскости, и пересекает ее, то полученная линия пересечения будет параллельна к исходной прямой.
  • Если две пересекающиеся плоскости, проходят через параллельные прямые, то полученная линия пересечения будет также параллельна прямым.
  • Когда две плоскости параллельны, то у них нет точек для соприкосновения.
  • Когда две прямые пересечены в одной плоскости, но параллельны относительно 2 прямых линий из другой плоскости, значит эти плоскости также параллельны.
  • Если прямая перпендикулярна относительно заданной плоскости, то она будет перпендикулярна относительно любой линии на плоскости.
  • Когда прямая перпендикулярна относительно 2-х пересекающихся прямых линий, которые лежат на плоскости, то она будет перпендикулярна к первой плоскости.

Рассмотрим еще несколько свойств перпендикулярных к плоскости линий:

  • Если прямая перпендикулярна относительно 1 из двух параллельно расположенных плоскостей, то она перпендикулярна и второй плоскости.
  • Когда 1 из двух параллельных перпендикулярна данной плоскости, другая прямая также расположена перпендикулярна к исходной плоскости.
  • Любая из прямых, пересекающих плоскость, когда она не является перпендикуляром, будет наклонной относительно заданной плоскости.
  • Когда любая плоскость перпендикулярна относительно прямой, значит она будет перпендикулярна и другой прямой.

Теорема о трех перпендикулярах на плоскости

Чтобы прямая линия, которая лежит в данной плоскости, была к ней перпендикулярна, вполне достаточно, чтобы она была перпендикулярна к проекции данной плоскости.

Любой угол между линией и плоскостью — это угол между линией и ее выступом на плоскости. Когда прямая b наклонна к исходной плоскости, то прямая а будет проекцией этой наклонной, а угол α будет находиться между наклонной и заданной плоскостью.

Любая прямая, которая получена при пересечении 2 плоскостей, будет называться ребром двугранного угла. Полуплоскости с одним общим ребром называют треугольными угловыми гранями.

Если граница полуплоскости совпадает с краем двугранного угла и делит двугранный угол на два равных, то ее называют биссектрисой.

Угол с двойными стенками можно измерять соответствующим линейным углом. Линейный угол для любого двугранного угла является углом между перпендикулярами, проведенными к каждой грани, и ее краем.

Изображение плоскости

В повседневной жизни многие предметы имеют прямоугольную форму, их поверхность имеет геометрическую плоскость.

Это книжный переплет, оконное стекло, поверхность стола и пр. Более того, глядя на эти предметы под углом и с большого расстояния, мы думаем, что они имеют форму параллелограмма. Поэтому плоскость на рисунке принято изображать в виде параллелограмма

Обычно эта плоскость обозначается одной буквой, например: «плоскость М».

Плоскость и ее основные свойства

Рассмотрим свойства плоскости, которые обычно принимаются без доказательств, поскольку это аксиомы:

  1. Когда каждые 2 точки, которые лежат на одной прямой, принадлежат к единой плоскости, то все точки, находящиеся на этой прямой, также будут принадлежать к данной плоскости.
  2. Если 2 плоскости соприкасаются в одной точке, значит они будут пересекаться на прямой линии, проходящей через эту точку.
  3. Для любых 3 точек, не принадлежащих одной прямой, можно нарисовать плоскость, причем только одну.

Последствия этих аксиом следующие:

  1. Можно нарисовать плоскость, имеющую прямую линию и точку за ней. Действительно утверждение, что точка вне прямой линии вместе с любыми двумя точками, лежащими на прямой, буду образовывать три точки, через которые может пройти новая плоскость.
  2. Через две пересекающиеся линии можно провести единственную плоскость. Если взять точку пересечения и еще одну точку на прямой, то получим 3 точки, через которые можно будет провести единственную плоскость.
  3. Только одну плоскость можно нарисовать двумя параллельными линиями. Доказано, что две параллельные прямые по определению лежат в одной плоскости. Эта плоскость уникальна, потому что не более одной плоскости можно провести через одну параллельную плоскость и одну точку в другую.
  4. Вращение плоскости по прямой. Поэтому можно провести бесчисленное количество плоскостей через любую линию в пространстве.
  • Действительно, пусть это будет прямая линия.
  • Возьмите отдельно точку А.
  • Через А и данную прямую а проходит плоскость М.
  • Возьмем точку B, лежащую вне данной плоскости М.
  • Через данную точку В и прямую линию также будет проходить плоскость N, которая может не совпадать с М. Это связано с тем, что она имеет точку B и она не принадлежит к М плоскости.
  • Мы можем взять другую точку С в пространстве за плоскости М и N.
  • Через точку С и прямой пройдет новая плоскость, например Р. Она не совпадет с М, ни с N, потому что содержит точку С, которая не принадлежит плоскости М и плоскости N.

Продолжая занимать все новые и новые точки в пространстве, мы получаем все больше и больше плоскостей. Они все будут пересекать исходную линию.

Их может быть бесчисленное число. Все полученные плоскости можно рассматривать как различные повороты одной исходной плоскости, которая может будет вращаться вокруг прямой А.

Таким образом, мы можем найти еще одно качество плоскости, которая может вращаться вокруг прямой, принадлежащей к ней.

Строительные задания в пространстве

Все планиметрические конструкции выполнены с помощью чертежных инструментов с использованием единой плоскости. Обычные инструменты рисования больше не подходят, так как вы не можете рисовать символы в пространстве.

Кроме того, при объемном строительстве в пространстве, появляется необходимость в построении еще одного нового элемента — новой плоскости. Ее невозможно построить в пространстве такими простыми средствами.

Поэтому при строительстве в пространстве, строителям необходимо точно знать, как лучше построить ту или иную конструкцию.

Во всех конструкциях в пространстве мы можем предполагать следующие качества:

  1. Плоскость можно выстроить, если найдены элементы, точно определяющие ее положение в исходном пространстве. Мы можем построить плоскость, если она будет проходить через 3 заданные точки, через прямую линию и наружную точку. А также иметь 2 пересекающиеся или две параллельные прямые.
  2. При условии, что даны 2 пересекающиеся плоскости, то обязательно будет существовать и линия их пересечения, которую можно легко найти.
  3. Если дана плоскость в пространстве, то можно легко сделать любые планиметрические конструкции.

Создание любой конструкции в пространстве означает сокращение ее до конечного числа указанных базовых структур. Эти базовые знания можно использовать для решения более сложных задач.

Именно так решаются задачи построения стереометрии.

Пример задания на построение в пространстве

Задача.

Нужно обнаружить точку, где будут пересекаться заданная прямая А с плоскостью Р. Затем необходимо составить нужное уравнение для прямой, проходящей через заданные точки: А (1; 2) и B (-1; 1).

Решение:

  1. подставляем в уравнение (8) х 1 = 1, y 1 = 2, х 2 = -1; y 2 = 1;
  2. получаем либо 2y-4 = х-1, либо х-2y + 3 = 0.

Каноническое уравнение прямой

Пусть декартова система координат будет установлена на плоскости Оху.

Задача: получить простое уравнение и если она является точкой прямой и и вектор кода прямой И.

  1. Возьмем любую точку А на плоскости Р.
  2. Через данную точку А и исходную прямую а проведем простую плоскость Q. Она будет пересекать плоскость Р вдоль новой прямой b.
  3. В плоскости Q находим точку С — пересечение прямых линии а и b.
  4. Эта точка будет желательной. Если прямые а и b окажутся параллельными, то у проблемы не будет решения.

Рассмотрим уравнение прямой, которая является линией пересечения двух плоскостей:

  1. Бесчисленные плоскости проходят через каждую прямую в пространстве.
  2. Любые два из них, пересекающиеся, определяют его в пространстве.
  3. Это значит, что уравнения для 2 плоскостей, вместе взятые, представят собой уравнение для прямой.

Вывод:

Любые 2 непар-ные плоскости, когда они заданы единым уравнением, можно определить по линии их взаимного пересечения. Эти уравнения именуют общими простыми уравнениями.

Рассмотрим уравнение прямой линии, проходящей через две точки:

  1. Заданы точки А (1х; 1у) и B (2х; 2у).
  2. Уравнение для прямой, проходящей через точки А (1х; 1у) и B (2х; 2у), когда они лежат на прямой, параллельной оси О х (y 2 -y 1 = 0) или оси О y (2х -1х = 0), то уравнение будет иметь вид: y = 1у или х = 1х.

Пусть будет плавающая точка, принадлежащая прямой А. Тогда получаем направляющий вектор для прямой А, он будет иметь идентичные координаты. Набор всех точек на данной плоскости определит прямую, проходящую через точку и имеющую вектор направления, при условии, что векторы коллинеарны.

Каноническое уравнение для прямой, лежащей на плоскости, можно задать в прям-ной системе к-т Оху, как прямую, проходящую через точку и имеющую свой вектор направления.

Пример канонического уравнения

Если уравнение является каноническим для прямой, то она должна соответствовать этому уравнению и будет проходит через точку, которая является ее вектором направления.

Нужно обратить внимание на следующие важные факты:

  1. Если направляющий вектор — это прямая линия, которая проходит через точку, то ее каноническое ур-ние можно составить.
  2. Когда один вектор является направляющим для прямой, то каждый из векторов также будет направляющим для заданной прямой.
  3. Поэтому каждое уравнение для любой другой прямой в канонической форме будет соответствовать заданной прямой.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Составить уравнение плоскости

Этот калькулятор онлайн составляет (находит) уравнение плоскости по трем точкам, лежащим на плоскости или по нормали и одной точке лежащей на плоскости.

Онлайн калькулятор для нахождения уравнения плоскости не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: \( -\frac<2> <3>\)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: \( -1\frac<5> <7>\)

Составить уравнение плоскости

Немного теории.

Общее уравнение плоскости

Пусть заданы:
прямоугольная система координат Oxyz,
произвольная плоскость \( \pi \);
точка \( M_0(x_0;y_0;z_0) \in \pi \);
вектор \( \vec(A;B;C) \), перпендикулярный плоскости \( \pi \) (смотри рисунок).

Рассмотрим произвольную точку М(х; у; z). Точка М лежит на плоскости \( \pi \) тогда и только тогда, когда векторы \( \vec \) и \( \vec \) взаимно перпендикулярны. Так как координаты вектора \( \vec \) равны \( x-x_0, \; y-y_0, \; z-z_0 \) , то в силу условия перпендикулярности двух векторов (скалярное произведение должно быть равно нулю) получаем, что точка М (х; у; z) лежит на плоскости \( \pi \) тогда и только тогда, когда

Раскрывая скобки, приведем уравнение (1) к виду
\( Ax+By+Cz+(-Ax_0-By_0-Cz_0)=0 \)
Далее, обозначая число \( -Ax_0-By_0-Cz_0 \) через \( D \), получаем

Верно и обратное: всякое уравнение первой степени вида (2) определяет в заданной прямоугольной системе координат плоскость. Действительно, пусть заданы прямоугольная система координат Oxyz и уравнение \( Ax+By+Cz+D=0 \) с произвольными коэффициентами А, В, С и D, причем из коэффициентов А, В и С хотя бы один отличен от нуля. Данное уравнение заведомо имеет хотя бы одно решение \( x_0, \; y_0, \; z_0 \) ( если, например, \( C \neq 0 \), то, взяв произвольные х0, и y0, из уравнения получим: \( z_0 = -\fracx_0 — \fracy_0-\frac \) ).

Таким образом, существует хотя бы одна точка M0(x0; y0; z0), координаты которой удовлетворяют уравнению, т.е. Ax0+By0+Cz0+D=0. Вычитая это числовое равенство из уравнения Ax+By+Cz+D=0, получаем уравнение
A(x-x0) + B(y-y0) + C(z-z0) + D=0,
эквивалентное данному. Полученное уравнение (а стало быть, и уравнение Ax+By+Cz+D=0 ) совпадает с уравнением (1) и, значит, определяет плоскость \( \pi \), проходящую через точку M0(x0 и перпендикулярную вектору \( \vec(A;B;C) \).

Вектор \( \vec(A;B;C) \), перпендикулярный плоскости, называется нормальным вектором или нормалью этой плоскости.

Теорема
Если два уравнения \( A_1x+B_1y+C_1z+D_1=0 \) и \( A_2x+B_2y+C_2z+D_2=0 \) определяют одну и ту же плоскость, то их коэффициенты пропорциональны, т.е. $$ \frac = \frac = \frac = \frac $$

Угол между двумя плоскостями

Рассмотрим две плоскости \( \pi_1 \), и \( \pi_2 \), заданные соответственно уравнениями

При любом расположении плоскостей \( \pi_1 \), и \( \pi_2 \) в пространстве один из углов \( \varphi \) между ними равен углу между их нормалями \( \vec(A_1;B_1;C_1) \) и \( \vec(A_2;B_2;C_2) \) и вычисляется по следующей формуле:
$$ \cos \varphi = \frac < \vec\cdot \vec>< |\vec| |\vec| > = \frac <\sqrt\; \sqrt > \tag <3>$$

Второй угол равен \( 180^\circ -\cos \varphi \)

Условие параллельности плоскостей

Если плоскости \( \pi_1 \) и \( \pi_2 \) параллельны, то коллинеарны их нормали \( \vec \) и \( \vec \), и наоборот. Но тогда
$$ \frac = \frac = \frac \tag <4>$$
Условие (4) является условием параллельности плоскостей \( \pi_1 \) и \( \pi_2 \)

Условие перпендикулярности плоскостей

Если плоскости \( \pi_1 \) и \( \pi_2 \) взаимно перпендикулярны, то их нормали \( \vec \) и \( \vec \) также перпендикулярны, и наоборот. Поэтому из формулы (3) непосредственно получаем условие перпендикулярности плоскостей \( \pi_1 \) и \( \pi_2 \):
\( A_1 A_2 + B_1 B_2 + C_1 C_2 = 0 \)


источники:

http://b4.cooksy.ru/articles/sostavit-uravnenie-ploskosti-prohodyaschey-cherez-pryamuyu-parallelno-vektoru

http://www.math-solution.ru/math-task/lp-eqplain