Составить уравнение плоскости перпендикулярной прямой онлайн

Уравнение плоскости, проходящей через прямую перпендикулярно заданной плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости проходящей через прямую перпендикулярно заданной плоскости − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L

.(1)
.(2)

Пусть плоскость α1 не перпендинулярно прямой L.

Задача заключается в построении уравнения плоскости α, проходящей через прямую L перпендикулярно плоскости α1 (Рис.1).

Запишем уравнение искомой плоскости α:

Ax+By+Cz+D=0.(3)

Искомая плоскость α проходит через прямую L, следовательно она проходит через точку M0(x0, y0, z0). Тогда справедливо следующее равенство:

Ax0+By0+Cz0+D=0.(4)

и поскольку прямая L принадлежит этой плоскости, то нормальный вектор n=<A, B, C> и направляющий вектор q=<m, p, l> ортогональны:

Для того, чтобы плоскость α была перпендикулярна плоскости α1, нормальные векторы этих плоскостей должны быть ортогональными, т.е. скалярное произведение этих векторов должно быть равным нулю:

AA1+BB1+CC1=0(6)

Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:

(7)

Решив однородную систему линейных уравнений (7) найдем частное решение. (Как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L перпендикулярно плоскости α1.

Пример 1. Найти уравнение плоскости α, проходящей через прямую L:

(8)

перпендикулярно плоскости α1 :

(9)

Уравнение искомой плоскости α можно записать следующей формулой:

где n=<A, B, C> нормальный вектор плоскости.

Поскольку плоскость α проходит через прямую L , то она проходит также через точку M0(x0, y0, z0)=M0(−4, 1, 2), тогда уравнение плоскости должна удовлетворять условию:

Ax0+By0+Cz0+D=0(10)

а условие принадлежности прямой L к искомой плоскости α представляется следующим равенством:

Am+Bp+Cl=0.(11)

Так как плоскость α должна быть перпендикулярна плоскости α1, то должна выполнятся условие:

AA1+BB1+CC1=0(12)
(13)
(14)
(15)

Представим эти уравнения в матричном виде:

(16)

Решим систему линейных уравнений (16) отностительно A, B, C, D:

(17)

Таким образом искомая плоскость имеет нормальный вектор n=<A, B, C>=<9/43,−17/43,5/43>. Тогда подставляя в уравнение плоскости

Ax+By+Cz+D=0(18)

значения A, B, C, D, получим:

Уравнение плоскости можно представить более упрощенном виде, умножив на число 43:

(19)

Ответ: Уравнение плоскости, проходящей через прямую (1) перпендикулярно плоскости (2) имеет вид (19).

Пример 2. Найти уравнение плоскости α, проходящей через прямую L:

(20)

перпендикулярно плоскости α1 :

(21)

Уравнение искомой плоскости α можно записать следующей формулой:

где n=<A, B, C> нормальный вектор плоскости.

Так как плоскость α проходит через прямую L , то она проходит также через точку M0(x0, y0, z0)=M0(−3, 1, 5), тогда уравнение плоскости должна удовлетворять условию:

Ax0+By0+Cz0+D=0(22)

а условие принадлежности прямой L к искомой плоскости α представляется следующим равенством:

Am+Bp+Cl=0.(23)

Так как плоскость α должна быть перпендикулярна плоскости α1, то должна выполнятся условие:

AA1+BB1+CC1=0(24)
(25)
(26)
(27)

Представим эти уравнения в матричном виде:

(28)

Решим систему линейных уравнений (28) отностительно A, B, C, D:

(29)

Таким образом искомая плоскость имеет нормальный вектор n=<A, B, C>=<3/2,−1/2,1>. Тогда подставляя в уравнение плоскости

Ax+By+Cz+D=0(30)

значения A, B, C, D, получим:

Уравнение плоскости можно представить более упрощенном виде, умножив на число 43:

(31)

Ответ: Уравнение плоскости, проходящей через прямую (1) перпендикулярно плоскости (2) имеет вид (31).

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Составить уравнение плоскости

Этот калькулятор онлайн составляет (находит) уравнение плоскости по трем точкам, лежащим на плоскости или по нормали и одной точке лежащей на плоскости.

Онлайн калькулятор для нахождения уравнения плоскости не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: \( -\frac<2> <3>\)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: \( -1\frac<5> <7>\)

Составить уравнение плоскости

Немного теории.

Общее уравнение плоскости

Пусть заданы:
прямоугольная система координат Oxyz,
произвольная плоскость \( \pi \);
точка \( M_0(x_0;y_0;z_0) \in \pi \);
вектор \( \vec(A;B;C) \), перпендикулярный плоскости \( \pi \) (смотри рисунок).

Рассмотрим произвольную точку М(х; у; z). Точка М лежит на плоскости \( \pi \) тогда и только тогда, когда векторы \( \vec \) и \( \vec \) взаимно перпендикулярны. Так как координаты вектора \( \vec \) равны \( x-x_0, \; y-y_0, \; z-z_0 \) , то в силу условия перпендикулярности двух векторов (скалярное произведение должно быть равно нулю) получаем, что точка М (х; у; z) лежит на плоскости \( \pi \) тогда и только тогда, когда

Раскрывая скобки, приведем уравнение (1) к виду
\( Ax+By+Cz+(-Ax_0-By_0-Cz_0)=0 \)
Далее, обозначая число \( -Ax_0-By_0-Cz_0 \) через \( D \), получаем

Верно и обратное: всякое уравнение первой степени вида (2) определяет в заданной прямоугольной системе координат плоскость. Действительно, пусть заданы прямоугольная система координат Oxyz и уравнение \( Ax+By+Cz+D=0 \) с произвольными коэффициентами А, В, С и D, причем из коэффициентов А, В и С хотя бы один отличен от нуля. Данное уравнение заведомо имеет хотя бы одно решение \( x_0, \; y_0, \; z_0 \) ( если, например, \( C \neq 0 \), то, взяв произвольные х0, и y0, из уравнения получим: \( z_0 = -\fracx_0 — \fracy_0-\frac \) ).

Таким образом, существует хотя бы одна точка M0(x0; y0; z0), координаты которой удовлетворяют уравнению, т.е. Ax0+By0+Cz0+D=0. Вычитая это числовое равенство из уравнения Ax+By+Cz+D=0, получаем уравнение
A(x-x0) + B(y-y0) + C(z-z0) + D=0,
эквивалентное данному. Полученное уравнение (а стало быть, и уравнение Ax+By+Cz+D=0 ) совпадает с уравнением (1) и, значит, определяет плоскость \( \pi \), проходящую через точку M0(x0 и перпендикулярную вектору \( \vec(A;B;C) \).

Вектор \( \vec(A;B;C) \), перпендикулярный плоскости, называется нормальным вектором или нормалью этой плоскости.

Теорема
Если два уравнения \( A_1x+B_1y+C_1z+D_1=0 \) и \( A_2x+B_2y+C_2z+D_2=0 \) определяют одну и ту же плоскость, то их коэффициенты пропорциональны, т.е. $$ \frac = \frac = \frac = \frac $$

Угол между двумя плоскостями

Рассмотрим две плоскости \( \pi_1 \), и \( \pi_2 \), заданные соответственно уравнениями

При любом расположении плоскостей \( \pi_1 \), и \( \pi_2 \) в пространстве один из углов \( \varphi \) между ними равен углу между их нормалями \( \vec(A_1;B_1;C_1) \) и \( \vec(A_2;B_2;C_2) \) и вычисляется по следующей формуле:
$$ \cos \varphi = \frac < \vec\cdot \vec>< |\vec| |\vec| > = \frac <\sqrt\; \sqrt > \tag <3>$$

Второй угол равен \( 180^\circ -\cos \varphi \)

Условие параллельности плоскостей

Если плоскости \( \pi_1 \) и \( \pi_2 \) параллельны, то коллинеарны их нормали \( \vec \) и \( \vec \), и наоборот. Но тогда
$$ \frac = \frac = \frac \tag <4>$$
Условие (4) является условием параллельности плоскостей \( \pi_1 \) и \( \pi_2 \)

Условие перпендикулярности плоскостей

Если плоскости \( \pi_1 \) и \( \pi_2 \) взаимно перпендикулярны, то их нормали \( \vec \) и \( \vec \) также перпендикулярны, и наоборот. Поэтому из формулы (3) непосредственно получаем условие перпендикулярности плоскостей \( \pi_1 \) и \( \pi_2 \):
\( A_1 A_2 + B_1 B_2 + C_1 C_2 = 0 \)

Уравнение плоскости, проходящей через данную точку и перпендикулярной данной прямой онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через данную точку и перпендикуляной данной прямой. Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямой (канонический или параметрический) введите координаты точки и коэффициенты уравнения прямой в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через данную точку и перпендикулярной данной прямой − теория, примеры и решения

.(1)

Построить уравнение плоскости α, проходящей через точку M0 и перпендинулярной прямой L.

Решение. Уравнение плоскости, проходящей через точку M0 и имеющий нормальный вектор n=<A, B, C> имеет следующий вид:

A(xx0)+B(yy0)+C(zz0)=0.(2)

Направляющий вектор прямой L имеет вид q=<m, p, l>. Поскольку прямая L и плоскость α перпендикулярны друг другу, следовательно нормальный вектор плоскостти и направляющий вектор прямой должны быть коллинеарны (Рис.1). Тогда вместо координат нормального вектора плоскости нужно подставить координаты направляющего вектора прямой L. Получим следующее уравнение плоскости:

m(xx0)+p(yy0)+l(zz0)=0.(3)

Упростим уравнение (3):

mx+py+lz+D=0,(4)

Таким образом уравнение (4) определяет плоскость, проходящей через точку M0(x0, y0, z0) и перпендикулярной прямой (1).

Ответ. Уравнение плоскости прпоходящей через точку M0(x0, y0, z0) и перпендикулярной прямой (1) имеет вид (4).

Пример 1. Найти уравнение плоскости α, проходящую через точку M0(3, −1, 2) и перпендикулярной прямой L:

(7)

Решение. Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n=<A, B, C> представляется формулой (2).

Направляющий вектор прямой L имеет следующий вид: :

Для того, чтобы прямая L была перпендикулярна плоскости α, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L, т.е. уравнение плоскости (2) примет следующий вид:

m(xx0)+p(yy0)+l(zz0)=0.(8)

Подставляя координаты точки M0 и направляющего вектора q в (8), получим:

(9)

Упростим уравнение (9):

2x+5y+4z−9=0.(10)

Ответ: Уравнение плоскости, проходящей через точку M0(3, −1, 2) и перпендикулярной прямой (7) имеет вид (10).

Пример 2. Найти уравнение плоскости α, проходящую через точку M0(4, 3, −6) и перпендикулярной прямой L, заданной параметрическим уравнением:

(11)

Решение. Приведем параметрическое уравнение (11) к каноническому виду:

(11′)

Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n=<A, B, C> представляется формулой:

A(xx0)+B(yy0)+C(zz0)=0.(12)

Направляющий вектор прямой L имеет следующий вид:

Для того, чтобы прямая L была перпендикулярна плоскости α, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L, т.е. уравнение плоскости (12) примет следующий вид:

m(xx0)+p(yy0)+l(zz0)=0.(13)

Подставляя координаты точки M0 и направляющего вектора q в (13), получим:

Упростим уравнение (13):

−5x+3y+11z+77=0.(14)

Ответ. Уравнение плоскости, проходящей через точку M0(4, 3, −6) и перпендикулярной прямой (11) имеет вид (14).


источники:

http://www.math-solution.ru/math-task/lp-eqplain

http://matworld.ru/analytic-geometry/uravnenie-ploskosti3-online.php