Составить уравнение плоскости проходящей через заданную точку

Онлайн калькулятор. Уравнение плоскости

Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.

Найти уравнение плоскости

Выберите метод решения исходя из имеющихся в задаче данных:

В задаче известны:

Ввод данных в калькулятор для составления уравнения плоскости

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления уравнения плоскости

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Уравнение плоскости.

Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки

В зависимости от условий задачи уравнение плоскости можно составить следующими способами:

    Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно составить по следующей формуле

x — x 1y — y 1z — z 1= 0
x 2 — x 1y 2 — y 1z 2 — z 1
x 3 — x 1y 3 — y 1z 3 — z 1


Если заданы координаты точки A( x 1, y 1, z 1) лежащей на плоскости и вектор нормали n = , то уравнение плоскости можно составить по следующей формуле:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Уравнение плоскости, проходящей через точку и прямую онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через данную точку и через данную прямую (точка не лежит на этой прямой). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямой (канонический или параметрический) введите координаты точки и коэффициенты уравнения прямой в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через точку и прямую − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L:

.(1)

Задача заключается в построении уравнения плоскости α, проходящей через точку M0 и и через прямую L(Рис.1).

Решение. Уравнение плоскости, проходящей через точку M0 и имеющий нормальный вектор n=<A, B, C> имеет следующий вид:

A(xx0)+B(yy0)+C(zz0)=0.(2)

Направляющий вектор прямой L имеет вид q=<m, p, l>. Поскольку плоскость проходит через прямую L, то она проходит также через точку M1(x1, y1, z1). Тогда уравнение плоскости, проходящей через точку M1(x1, y1, z1) имеет вид:

A(xx1)+B(yy1)+C(zz1)=0.(3)

Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q прямой L, т.е. скалярное произведение этих векторов должен быть равным нулю:

Вычитая уравнение (3) из уравнения (2), получим:

A(x1x0)+B(y1y0)+C(z1z0)=0.(5)

Решая совместно уравнения (4) и (5) отностительно коэффициентов A, B, C получим такие значения A, B, C, при которых уравнение (2) проходит через точку M0 и через прямую (1). Для решения систему уравнений (4), (5), запишем их в матричном виде:

.(6)

Как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн.

Получив частное решение уравнения (6) и подставив полученные значения A, B, C в (2), получим решение задачи.

(7)

Решение. Уравнение плоскости α, проходящей через точку M0(x0, y0, z0)=M0(1, 2, 5) и имеющий нормальный вектор n=<A, B, C> представляется формулой (2).

Вычитая уравнение (3) из уравнения (2), получим:

A(x1x0)+B(y1y0)+C(z1z0)=0.(8)

Направляющий вектор прямой L имеет следующий вид:

Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q прямой L, т.е. скалярное произведение этих векторов должен быть равным нулю:

(10)
(11)

Решим систему линейных уравнений (10) и (11) отностительно A, B, C. Для этого представим эти уравнения в матричном виде:

(12)

Решив однородную систему линейных уравнений (12) используя метод Гаусса, найдем следующее частное решение:

Подставляя значения коэффициентов A, B, C в уравнение плоскости (2), получим:

(13)

Упростим уравнение (13):

(14)

Ответ: Уравнение плоскости, проходящей через точку M0(1, 2, 5) и через прямую (7) имеет вид (14).

Пример 2. Найти уравнение плоскости α, проходящую через точку M0(4, 3, −6) и через прямую L, заданной параметрическим уравнением:

(15)

Решение. Приведем параметрическое уравнение (15) к каноническому виду:

(16)

Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n=<A, B, C> представляется формулой:

A(xx0)+B(yy0)+C(zz0)=0.(17)

Поскольку плоскость проходит через прямую L, то она проходит также через точку M1(x1, y1, z1)=(0, 2, 4). Тогда уравнение плоскости, проходящей через точку M1(x1, y1, z1) имеет вид:

A(xx1)+B(yy1)+C(zz1)=0.(18)

Вычитая уравнение (18) из уравнения (17), получим:

A(x1x0)+B(y1y0)+C(z1z0)=0.(19)

Направляющий вектор прямой L имеет следующий вид:

Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n должен быть ортогональным направляющему вектору прямой L :

Am+Bp+Cl=0.(20)
(21)
(22)

Решим систему линейных уравнений (21) и (22) отностительно A, B, C. Для этого представим эти уравнения в матричном виде:

(23)

Решив однородную систему линейных уравнений (23) используя метод Гаусса, найдем следующее частное решение:

Подставляя значения коэффициентов A, B, C в уравнение плоскости (17), получим:

(24)

Упростим уравнение (24):

(25)

Уравнение плоскости можно представить более упрощенном виде, умножив на число 23.

(26)

Ответ: Уравнение плоскости, проходящей через точку M0(4, 3, −6) и через прямую (16) имеет вид (26).

Уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой

Данная статья дает представление о том, как составить уравнение плоскости, проходящей через заданную точку трехмерного пространства перпендикулярно к заданной прямой. Разберем приведенный алгоритм на примере решения типовых задач.

Нахождение уравнения плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой

Пусть задано трехмерное пространство и прямоугольная система координат O x y z в нем. Заданы также точка М 1 ( x 1 , y 1 , z 1 ) , прямая a и плоскость α , проходящая через точку М 1 перпендикулярно прямой a . Необходимо записать уравнение плоскости α .

Прежде чем приступить к решению этой задачи, вспомним теорему геометрии из программы 10 — 11 классов, которая гласит:

Через заданную точку трехмерного пространства проходит единственная плоскость, перпендикулярная к заданной прямой.

Теперь рассмотрим, как же найти уравнение этой единственной плоскости, проходящей через исходную точку и перпендикулярной данной прямой.

Возможно записать общее уравнение плоскости, если известны координаты точки, принадлежащей этой плоскости, а также координаты нормального вектора плоскости.

Условием задачи нам заданы координаты x 1 , y 1 , z 1 точки М 1 , через которую проходит плоскость α . Если мы определим координаты нормального вектора плоскости α , то получим возможность записать искомое уравнение.

Нормальным вектором плоскости α , так как он ненулевой и лежит на прямой a , перпендикулярной плоскости α , будет являться любой направляющий вектор прямой a . Так, задача нахождения координат нормального вектора плоскости α преобразовывается в задачу определения координат направляющего вектора прямой a .

Определение координат направляющего вектора прямой a может осуществляться разными методами: зависит от варианта задания прямой a в исходных условиях. К примеру, если прямая a в условии задачи задана каноническими уравнениями вида

x — x 1 a x = y — y 1 a y = z — z 1 a z

или параметрическими уравнениями вида:

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

то направляющий вектор прямой будет иметь координаты а x , а y и а z . В случае, когда прямая a представлена двумя точками М 2 ( x 2 , y 2 , z 2 ) и М 3 ( x 3 , y 3 , z 3 ) , то координаты направляющего вектора буду определяться как (x3 – x2, y3 – y2, z3 – z2).

Алгоритм для нахождения уравнения плоскости, проходящей через заданную точку перпендикулярно заданной прямой:

— определяем координаты направляющего вектора прямой a : a → = ( а x , а y , а z ) ;

— определяем координаты нормального вектора плоскости α как координаты направляющего вектора прямой a :

n → = ( A , B , C ) , где A = a x , B = a y , C = a z ;

— записываем уравнение плоскости, проходящей через точку М 1 ( x 1 , y 1 , z 1 ) и имеющей нормальный вектор n → = ( A , B , C ) в виде A ( x – x 1 ) + B ( y – y 1 ) + C ( z – z 1 ) = 0 . Это и будет являться требуемым уравнением плоскости, которая проходит через заданную точку пространства и перпендикулярна к данной прямой.

Полученное общее уравнение плоскости: A ( x – x 1 ) + B ( y – y 1 ) + C ( z – z 1 ) = 0 дает возможность получить уравнение плоскости в отрезках или нормальное уравнение плоскости.

Решим несколько примеров, используя полученный выше алгоритм.

Задана точка М 1 ( 3 , — 4 , 5 ) , через которую проходит плоскость, и эта плоскость перпендикулярна координатной прямой О z .

Решение

направляющим вектором координатной прямой O z будет координатный вектор k ⇀ = ( 0 , 0 , 1 ) . Следовательно, нормальный вектор плоскости имеет координаты ( 0 , 0 , 1 ) . Запишем уравнение плоскости, проходящей через заданную точку М 1 ( 3 , — 4 , 5 ) , нормальный вектор которой имеет координаты ( 0 , 0 , 1 ) :

A ( x — x 1 ) + B ( y — y 1 ) + C ( z — z 1 ) = 0 ⇔ ⇔ 0 · ( x — 3 ) + 0 · ( y — ( — 4 ) ) + 1 · ( z — 5 ) = 0 ⇔ z — 5 = 0

Ответ: z – 5 = 0 .

Рассмотрим еще один способ решить данную задачу:

Плоскость, которая перпендикулярна прямой O z будет задана неполным общим уравнением плоскости вида С z + D = 0 , C ≠ 0 . Определим значения C и D : такие, при которых плоскость проходит через заданную точку. Подставим координаты этой точки в уравнение С z + D = 0 , получим: С · 5 + D = 0 . Т.е. числа, C и D связаны соотношением — D C = 5 . Приняв С = 1 , получим D = — 5 .

Подставим эти значения в уравнение С z + D = 0 и получим требуемое уравнение плоскости, перпендикулярной к прямой O z и проходящей через точку М 1 ( 3 , — 4 , 5 ) .

Оно будет иметь вид: z – 5 = 0 .

Ответ: z – 5 = 0 .

Составьте уравнение плоскости, проходящей через начало координат и перпендикулярной к прямой x — 3 = y + 1 — 7 = z + 5 2

Решение

Опираясь на условия задачи, можно утверждать, что за нормальный вектор n → заданной плоскости можно принять направляющий вектор заданной прямой. Таким, образом: n → = ( — 3 , — 7 , 2 ) . Запишем уравнение плоскости, проходящей через точку О ( 0 , 0 , 0 ) и имеющей нормальный вектор n → = ( — 3 , — 7 , 2 ) :

— 3 · ( x — 0 ) — 7 · ( y — 0 ) + 2 · ( z — 0 ) = 0 ⇔ — 3 x — 7 y + 2 z = 0

Мы получили требуемое уравнение плоскости, проходящей через начало координат перпендикулярно к заданной прямой.

Ответ: — 3 x — 7 y + 2 z = 0

Задана прямоугольная система координат O x y z в трехмерном пространстве, в ней – две точки А ( 2 , — 1 , — 2 ) и B ( 3 , — 2 , 4 ) . Плоскость α проходит через точку A перпендикулярно прямой А В . Необходимо составить уравнение плоскости α в отрезках.

Решение

Плоскость α перпендикулярна к прямой А В , тогда вектор А В → будет нормальным вектором плоскости α . Координаты этого вектора определяются как разности соответствующих координат точек В ( 3 , — 2 , 4 ) и А ( 2 , — 1 , — 2 ) :

A B → = ( 3 — 2 , — 2 — ( — 1 ) , 4 — ( — 2 ) ) ⇔ A B → = ( 1 , — 1 , 6 )

Общее уравнение плоскости будет записано в следующем виде:

1 · x — 2 — 1 · y — ( — 1 + 6 · ( z — ( — 2 ) ) = 0 ⇔ x — y + 6 z + 9 = 0

Теперь составим искомое уравнение плоскости в отрезках:

x — y + 6 z + 9 = 0 ⇔ x — y + 6 z = — 9 ⇔ x — 9 + y 9 + z — 3 2 = 1

Ответ: x — 9 + y 9 + z — 3 2 = 1

Также нужно отметить, что встречаются задачи, требование которых – написать уравнение плоскости, проходящей через заданную точку и перпендикулярной к двум заданным плоскостям. В общем, решение этой задачи в том, чтобы составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой, т.к. две пересекающиеся плоскости задают прямую линию.

Задана прямоугольная система координат O x y z , в ней – точка М 1 ( 2 , 0 , — 5 ) . Заданы также уравнения двух плоскостей 3 x + 2 y + 1 = 0 и x + 2 z – 1 = 0 , которые пересекаются по прямой a . Необходимо составить уравнение плоскости, проходящей через точку М 1 перпендикулярно к прямой a .

Решение

Определим координаты направляющего вектора прямой a . Он перпендикулярен как нормальному вектору n 1 → ( 3 , 2 , 0 ) плоскости n → ( 1 , 0 , 2 ) , так и нормальному вектору 3 x + 2 y + 1 = 0 плоскости x + 2 z — 1 = 0 .

Тогда направляющим вектором α → прямой a возьмем векторное произведение векторов n 1 → и n 2 → :

a → = n 1 → × n 2 → = i → j → k → 3 2 0 1 0 2 = 4 · i → — 6 · j → — 2 · k → ⇒ a → = ( 4 , — 6 , — 2 )

Таким образом, вектор n → = ( 4 , — 6 , — 2 ) будет нормальным вектором плоскости, перпендикулярной к прямой a . Запишем искомое уравнение плоскости:

4 · ( x — 2 ) — 6 · ( y — 0 ) — 2 · ( z — ( — 5 ) ) = 0 ⇔ 4 x — 6 y — 2 z — 18 = 0 ⇔ ⇔ 2 x — 3 y — z — 9 = 0

Ответ: 2 x — 3 y — z — 9 = 0


источники:

http://matworld.ru/analytic-geometry/uravnenie-ploskosti4-online.php

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/uravnenie-ploskosti-prohodjaschej-cherez-zadannuju/