Составить уравнение по точкам экстремума

Экстремумы функции

Необходимое условие экстремума функции одной переменной

Достаточное условие экстремума функции одной переменной

Если в точке x * выполняется условие:

Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке [1; 3].
Решение.

Критическая точка одна x1 = 2 (f’(x)=0). Эта точка принадлежит отрезку [1;3]. (Точка x=0 не является критической, так как 0∉[1;3]).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)= 5 /2, f(3)=3 8 /81
Ответ: fmin= 5 /2 при x=2; fmax=9 при x=1

Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
Решение.
Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π /3+2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π /3+2πk, k∈Z – точки минимума функции; , значит x=- π /3+2πk, k∈Z – точки максимума функции.

Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

Пример №4 . Разбить число 49 на два слагаемых, произведение которых будет наибольшим.
Решение. Обозначим x — первое слагаемое. Тогда (49-x) — второе слагаемое.
Произведение будет максимальным: x·(49-x) → max
или
49x — x 2

Максимумы, минимумы и экстремумы функций

Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.

Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.

Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.

Минимумы и максимумы вместе именуют экстремумами функции.

Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.

В точках экстремумов (т.е. максимумов и минимумов) производная равна нулю.

Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.

Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. \(y\). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, \(-5\) точка минимума (или точка экстремума), а \(1\) – минимум (или экстремум).

Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?

Давайте вместе найдем количество точек экстремума функции по графику производной на примере:

У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки \(-13\), \(-11\), \(-9\),\(-7\) и \(3\). Количество точек экстремума функции – \(5\).

Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось \(x\)).

Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:

— Производная положительна там, где функция возрастает.
— Производная отрицательна там, где функция убывает.

С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.

Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди \(-13\), \(-11\), \(-9\),\(-7\) и \(3\).

Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.

Начнем с \(-13\): до \(-13\) производная положительна т.е. функция растет, после — производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что \(-13\) – точка максимума.

\(-11\): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что \(-11\) – это минимум.

\(- 9\): функция возрастает, а потом убывает – максимум.

Все вышесказанное можно обобщить следующими выводами:

— Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
— Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.

Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:

  1. Найдите производную функции \(f'(x)\).
  2. Найдите корни уравнения \(f'(x)=0\).
  3. Нарисуйте ось \(x\) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью \(f'(x)\), а под осью \(f(x)\).
  4. Определите знак производной в каждом промежутке (методом интервалов).
  5. Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью).
  6. Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
    — если \(f’(x)\) изменила знак с «\(+\)» на «\(-\)», то \(x_1\) – точка максимума;
    — если \(f’(x)\) изменила знак с «\(-\)» на «\(+\)», то \(x_3\) – точка минимума;
    — если \(f’(x)\) не изменила знак, то \(x_2\) – может быть точкой перегиба.

Всё! Точки максимумов и минимумов найдены.

Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.

Пример(ЕГЭ). Найдите точку максимума функции \(y=3x^5-20x^3-54\).
Решение:
1. Найдем производную функции: \(y’=15x^4-60x^2\).
2. Приравняем её к нулю и решим уравнение:

3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:

Теперь очевидно, что точкой максимума является \(-2\).

Экстремум функции двух переменных. Примеры исследования функций на экстремум.

Пусть функция $z=f(x,y)$ определена в некоторой окрестности точки $(x_0,y_0)$. Говорят, что $(x_0,y_0)$ – точка (локального) максимума, если для всех точек $(x,y)$ некоторой окрестности точки $(x_0,y_0)$ выполнено неравенство $f(x,y) f(x_0,y_0)$, то точку $(x_0,y_0)$ называют точкой (локального) минимума.

Точки максимума и минимума часто называют общим термином – точки экстремума.

Если $(x_0,y_0)$ – точка максимума, то значение функции $f(x_0,y_0)$ в этой точке называют максимумом функции $z=f(x,y)$. Соответственно, значение функции в точке минимума именуют минимумом функции $z=f(x,y)$. Минимумы и максимумы функции объединяют общим термином – экстремумы функции.

Алгоритм исследования функции $z=f(x,y)$ на экстремум

  1. Найти частные производные $\frac<\partial z><\partial x>$ и $\frac<\partial z><\partial y>$. Составить и решить систему уравнений $ \left \ < \begin& \frac<\partial z><\partial x>=0;\\ & \frac<\partial z><\partial y>=0. \end \right.$. Точки, координаты которых удовлетворяют указанной системе, называют стационарными.
  2. Найти $\frac<\partial^2z><\partial x^2>$, $\frac<\partial^2z><\partial x\partial y>$, $\frac<\partial^2z><\partial y^2>$ и вычислить значение $\Delta=\frac<\partial^2z><\partial x^2>\cdot \frac<\partial^2z><\partial y^2>-\left(\frac<\partial^2z><\partial x\partial y>\right)^2$ в каждой стационарной точке. После этого использовать следующую схему:
    1. Если $\Delta > 0$ и $\frac<\partial^2z><\partial x^2>> 0$ (или $\frac<\partial^2z><\partial y^2>> 0$), то в исследуемая точка есть точкой минимума.
    2. Если $\Delta > 0$ и $\frac<\partial^2z><\partial x^2>0$, то $\frac<\partial^2z><\partial x^2>\cdot \frac<\partial^2z><\partial y^2>-\left(\frac<\partial^2z><\partial x\partial y>\right)^2 > 0$. А отсюда следует, что $\frac<\partial^2z><\partial x^2>\cdot \frac<\partial^2z><\partial y^2>> \left(\frac<\partial^2z><\partial x\partial y>\right)^2 ≥ 0$. Т.е. $\frac<\partial^2z><\partial x^2>\cdot \frac<\partial^2z><\partial y^2>> 0$. Если произведение неких величин больше нуля, то эти величины одного знака. Т.е., например, если $\frac<\partial^2z><\partial x^2>> 0$, то и $\frac<\partial^2z><\partial y^2>> 0$. Короче говоря, если $\Delta > 0$ то знаки $\frac<\partial^2z><\partial x^2>$ и $\frac<\partial^2z><\partial y^2>$ совпадают.

    Исследовать на экстремум функцию $z=4x^2-6xy-34x+5y^2+42y+7$.

    Будем следовать указанному выше алгоритму. Для начала найдём частные производные первого порядка:

    Сократим каждое уравнение этой системы на $2$ и перенесём числа в правые части уравнений:

    Мы получили систему линейных алгебраических уравнений. Мне в этой ситуации кажется наиболее удобным применение метода Крамера для решения полученной системы.

    Значения $x=2$, $y=-3$ – это координаты стационарной точки $(2;-3)$. Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

    Вычислим значение $\Delta$:

    Так как $\Delta > 0$ и $\frac<\partial^2 z> <\partial x^2>> 0$, то согласно алгоритму точка $(2;-3)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $(2;-3)$:

    $$ z_<\min>=z(2;-3)=4\cdot 2^2-6\cdot 2 \cdot (-3)-34\cdot 2+5\cdot (-3)^2+42\cdot (-3)+7=-90. $$

    Ответ: $(2;-3)$ – точка минимума; $z_<\min>=-90$.

    Исследовать на экстремум функцию $z=x^3+3xy^2-15x-12y+1$.

    Будем следовать указанному выше алгоритму. Для начала найдём частные производные первого порядка:

    Сократим первое уравнение на 3, а второе – на 6.

    Если $x=0$, то второе уравнение приведёт нас к противоречию: $0\cdot y-2=0$, $-2=0$. Отсюда вывод: $x\neq 0$. Тогда из второго уравнения имеем: $xy=2$, $y=\frac<2>$. Подставляя $y=\frac<2>$ в первое уравнение, будем иметь:

    Получили биквадратное уравнение. Делаем замену $t=x^2$ (при этом имеем в виду, что $t > 0$):

    Если $t=1$, то $x^2=1$. Отсюда имеем два значения $x$: $x_1=1$, $x_2=-1$. Если $t=4$, то $x^2=4$, т.е. $x_3=2$, $x_4=-2$. Вспоминая, что $y=\frac<2>$, получим:

    Итак, у нас есть четыре стационарные точки: $M_1(1;2)$, $M_2(-1;-2)$, $M_3(2;1)$, $M_4(-2;-1)$. На этом первый шаг алгоритма закончен.

    Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

    Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(1;2)$. В этой точке имеем:

    Так как $\Delta(M_1) 0$ и $\left.\frac<\partial^2 z><\partial x^2>\right|_ > 0$, то согласно алгоритму $M_3(2;1)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

    $$ z_<\min>=z(2;1)=2^3+3\cdot 2\cdot 1^2-15\cdot 2-12\cdot 1+1=-27. $$

    Осталось исследовать точку $M_4(-2;-1)$. В этой точке получим:

    Так как $\Delta(M_4) > 0$ и $\left.\frac<\partial^2 z><\partial x^2>\right|_ 0$ (так как оба сомножителя $36$ и $(2^2-1^2)$ положительны) и можно не находить конкретное значение $\Delta$. Правда, для типовых расчётов это замечание бесполезно, – там требуют довести вычисления до числа 🙂

    Исследовать на экстремум функцию $z=x^4+y^4-2x^2+4xy-2y^2+3$.

    Будем следовать алгоритму. Для начала найдём частные производные первого порядка:

    Сократим оба уравнения на $4$:

    Добавим к второму уравнению первое и выразим $y$ через $x$:

    Подставляя $y=-x$ в первое уравнение системы, будем иметь:

    Из полученного уравнения имеем: $x=0$ или $x^2-2=0$. Из уравнения $x^2-2=0$ следует, что $x=-\sqrt<2>$ или $x=\sqrt<2>$. Итак, найдены три значения $x$, а именно: $x_1=0$, $x_2=-\sqrt<2>$, $x_3=\sqrt<2>$. Так как $y=-x$, то $y_1=-x_1=0$, $y_2=-x_2=\sqrt<2>$, $y_3=-x_3=-\sqrt<2>$.

    Первый шаг решения окончен. Мы получили три стационарные точки: $M_1(0;0)$, $M_2(-\sqrt<2>,\sqrt<2>)$, $M_3(\sqrt<2>,-\sqrt<2>)$.

    Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

    Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(0;0)$. В этой точке имеем:

    $$\Delta(M_1)=16\cdot((3\cdot 0^2-1)(3\cdot 0^2-1)-1)=16\cdot 0=0.$$

    Так как $\Delta(M_1) = 0$, то согласно алгоритму требуется дополнительное исследование, ибо ничего определённого про наличие экстремума в рассматриваемой точке сказать нельзя. Оставим покамест эту точку в покое и перейдём в иным точкам.

    Исследуем точку $M_2(-\sqrt<2>,\sqrt<2>)$. В этой точке получим:

    Так как $\Delta(M_2) > 0$ и $\left.\frac<\partial^2 z><\partial x^2>\right|_ > 0$, то согласно алгоритму $M_2(-\sqrt<2>,\sqrt<2>)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_2$:

    Аналогично предыдущему пункту исследуем точку $M_3(\sqrt<2>,-\sqrt<2>)$. В этой точке получим:

    Так как $\Delta(M_3) > 0$ и $\left.\frac<\partial^2 z><\partial x^2>\right|_ > 0$, то согласно алгоритму $M_3(\sqrt<2>,-\sqrt<2>)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

    Настал черёд вернуться к точке $M_1(0;0)$, в которой $\Delta(M_1) = 0$. Согласно алгоритму требуется дополнительное исследование. Под этой уклончивой фразой подразумевается «делайте, что хотите» :). Общего способа разрешения таких ситуаций нет, – и это понятно. Если бы такой способ был, то он давно бы вошёл во все учебники. А покамест приходится искать особый подход к каждой точке, в которой $\Delta = 0$. Ну что же, поисследуем поведение функции в окрестности точки $M_1(0;0)$. Сразу отметим, что $z(M_1)=z(0;0)=3$. Предположим, что $M_1(0;0)$ – точка минимума. Тогда для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) > z(M_1) $, т.е. $z(M) > 3$. А вдруг любая окрестность содержит точки, в которых $z(M) 3$? Тогда в точке $M_1$ точно не будет максимума.

    Рассмотрим точки, у которых $y=x$, т.е. точки вида $(x,x)$. В этих точках функция $z$ будет принимать такие значения:

    $$ z(x,x)=x^4+x^4-2x^2+4x\cdot x-2\cdot x^2+3=2x^4+3. $$

    Так как в любой окрестности точки $M_1(0;0)$ имеем $2x^4 > 0$, то $2x^4+3 > 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z > 3$, посему точка $M_1(0;0)$ не может быть точкой максимума.

    Точка $M_1(0;0)$ не является ни точкой максимума, ни точкой минимума. Вывод: $M_1$ вообще не является точкой экстремума.

    Ответ: $(-\sqrt<2>,\sqrt<2>)$, $(\sqrt<2>,-\sqrt<2>)$ – точки минимума функции $z$. В обеих точках $z_<\min>=-5$.

    Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).


    источники:

    http://cos-cos.ru/math/327/

    http://math1.ru/education/funct_sev_var/extr2.html