Составить уравнение прямой проходящей точку параллельно вектору

Уравнения прямой в пространстве векторное, общее, канонические, параметрические (Таблица)

Способ задания прямой в пространстве

Вид уравнения прямой

Векторное уравнение прямой, проходящей через точку М параллельно заданному вектору s .

s — направляющий вектор прямой

где t — скалярный множитель (параметр)

Канонические уравнения прямой, проходящей через точку M0(x0,y0,z0) и параллельно вектору s =

Параметрические уравнения прямой, проходящей через точку (x0,y0,z0) параллельно вектору s =

Прямая как линия пересечения двух непараллельных плоскостей (общие уравнения прямой)

Составить уравнение прямой проходящей точку параллельно вектору

Неверно введено число.

Точки должны быть разными.

Уравнение прямой в пространстве

Введите координаты точки A

x0=
y0=
z0=
x1=
y1=
z1=

Количество знаков после разделителя дроби в числах:

Каноническое уравнение прямой в пространстве:

Параметрическое уравнение прямой:

где вектор a( ; ; ) — направляющий вектор

Теория

Каноническим уравнением прямой в пространстве, проходящей через точку A(x0,y0,z0) параллельно вектору a(l,m,n) называется равенство:

Уравнением прямой в пространстве, проходящей через две точки A(x0,y0,z0) и B(x1,y1,z1) называется равенство:

Параметрическим уравнением прямой в пространстве, проходящей через точку A(x0,y0,z0) параллельно вектору a(l,m,n) называется:

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Аналитическая геометрия
  • Прямая в пространстве.

Прямая в пространстве, всевозможные уравнения.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Существуют такие формы записи уравнения прямой в пространстве:

1) $\left\<\beginA_1x+B_1y+C_1z+D_1=0\quad (P_1)\\ A_2x+B_2y+C_2z+D_2=0\quad (P_2)\end\right. — $ общее уравнение прямой $L$ в пространстве, как линии пересечения двух плоскостей $P_1$ и $P_2.$

2) $\frac=\frac=\frac

-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $\overline=(m, n, p).$ Вектор $\overline S$ является направляющим вектором прямой $L.$

3) $\frac=\frac=\frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$

4) Приравнивая каждую из частей канонического уравнения 2 к прараметру $t,$ получаем параметрическое уравнение прямой:

Расположение двух прямых в пространстве.

Условие параллельности двух прямых: Прямые $L_1$ и $L_2$ параллельны тогда и только тогда, когда $\overline_1\parallel\overline_2\Leftrightarrow$ $\frac=\frac=\frac.$

Условие перпендикулярности двух прямых: $L_1\perp L_2\Leftrightarrow$ $\overline_1\perp\overline_2\Leftrightarrow$ $\cdot+\cdot+p_1\cdot p_2=0.$

Угол между прямыми:

Расстояние от точки до прямой равно длине перпендикуляра, опущенного из точки на данную прямую.

Пусть прямая $L$ задана уравнением $\frac=\frac=\frac

,$ следовательно $\overline S=(m, n, p).$ Пусть также $M_2=(x_2, y_2, z_2) -$ произвольная точка, принадлежащая прямой $L.$ Тогда расстояние от точки $M_1=(x_1, y_1, z_1)$ до прямой $L$ можно найти по формуле: $$d(M_1, L)=\frac<|[\overline, \overline S]|><|\overline S|>.$$

Примеры.

2.198. Написать каноническое уравнение прямой, проходящей через точку $M_0(2, 0, -3)$ параллельно:

а) вектору $q(2, -3, 5);$

е) прямой $x=-2+t, y=2t, z=1-\frac<1><2>t.$

Решение.

а) Воспользуемся формулой (2) уравнения прямой в пространстве:

$\frac=\frac=\frac

-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $\overline=(m, n, p).$

По условию $M_0(2, 0, -3)$ и $\overline=q(2,-3,5).$

б) Прямая, параллельная заданной прямой, должна быть параллельна ее направляющему вектору. Направляющий вектор прямой $\frac<5>=\frac<2>=\frac<-1>$ имеет координаты $\overline S(5, 2, -1).$ Далее, находим уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $\overline S(5, 2, -1)$ как и в пункте а):

в) ось OX имеет направляющий вектор $i=(1, 0, 0).$ Таким образом, ищем уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $i(1, 0, 0):$

д) Прямая, заданная как пересечение двух плоскостей перпендикулярна нормалям обеих плоскостей , поэтому Направляющий вектор прямой

$\left\<\begin3x-y+2z-7=0,\\ x+3y-2z-3=0; \end\right.$ можно найти как векторное произведение нормалей заданных плоскостей.

Для плоскости $P_1:$ $3x-y+2z-7=0$ нормальный вектор имеет координаты $N_1(3, -1, 2);$

для плосости $P_2:$ $x+3y-2z-3,$ нормальный вектор имеет координаты $N_2(1, 3, -2).$

Находим векторное произведение:

Таким образом, направляющий вектор прямой $\left\<\begin3x-y+2z-7=0,\\ x+3y-2z-3=0; \end\right.$ имеет координаты $\overline S (-4, 8, 10).$

Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $\overline S(-4, 8, 10):$

е) Найдем направляющий вектор прямой $x=-2+t, y=2t, z=1-\frac<1><2>t.$ Для этого запишем уравнение этой прямой в каноническом виде:

Отсюда находим направляющий вектор $\overline S\left(1, 2, -\frac<1><2>\right).$ Умножим координаты направляющего вектора на 2 (чтобы избавиться от дроби): $\overline S_1(2, 4, -1).$

Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $\overline S(2, 4, -1):$

2.199(a). Написать уравнение прямой, проходящей через две заданные точки $M_1 (1, -2, 1)$ и $M_2(3, 1, -1).$

Решение.

Воспользуемся формулой (3) уравнения прямой в пространстве:

$\frac=\frac=\frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$

Подставляем заданные точки:

2.204. Найти расстояние между параллельными прямыми

Решение.

Расстояние между параллельными прямыми $L_1$ и $L_2$ равно расстоянию от произвольной точки прямой $L_1$ до прямой $L_2.$ Следовательно, его можно найти по формуле $$d(L_1, L_2)=d(M_1, L_2)=\frac<|[\overline, \overline S]|><|\overline S|>,$$ где $M_1-$ произвольная точка прямой $L_1,$ $M_2 — $произвольная точка прямой $L_2,$ $\overline S -$ направляющий вектор прямой $L_2.$

Из канонических уравнений прямых берем точки $M_1=(2, -1, 0)\in L_1,$ $M_2=(7, 1, 3)\in L_2,$ $\overline S=(3, 4, 2). $

Отсюда находим $\overline=(7-2, 1-(-1),3-0)=(5, 2, 3);$

Ответ: 3.

2.205 (а). Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $L:$ $\left\<\begin2x-2y+z+3=0,\\ 3x-2y+2z+17=0 \end\right.$

Решение.

Для того, чтобы найти расстояние от точки $A$ до прямой $L,$ нам необходимо выбрать произвольную точку $M,$ принадлежащую прямой $L$ и найти направляющий вектор этой прямой.

Выбираем точку $M.$ Пусть координата $z=0.$ Подставим это значение в данную систему:

Таким образом, $M=(-14, -\frac<25><2>, 0)$

Направляющий вектор найдем, как векторное произведение нормалей заданных плоскостей:

Для плоскости $P_1:$ $2x-2y+z+3=0$ нормальный вектор имеет координаты $N_1(2, -2, 1);$

для плосости $P_2:$ $3x+2y+2z+17=0,$ нормальный вектор имеет координаты $N_2(3, -2, 2).$

Находим векторное произведение:

Таким образом, направляющий вектор прямой $\left\<\begin2x-2y+z+3=0,\\ 3x-2y+2z+17=0 \end\right.$

имеет координаты $\overline S (-2, -1, 2).$

Теперь можно воспользоваться формулой $$d(A, L)=\frac<|[\overline, \overline S]|><|\overline S|>.$$

$\overline=\left(2-(-14),3-\left(-\frac<25><2>\right),-1-0\right)=\left(16, 15\frac<1><2>, -1\right)$

Ответ: $d(A, L)=15.$

2.212. Написать каноническое уравнение прямой, которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $P: 3x-2y-3z-7=0$ и пересекает прямую $L: \frac<3>=\frac<-2>=\frac<2>.$

Решение.

Запишем уравнение плоскости $P_1,$ которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $3x-2y-3z-7=0:$

$P: 3x-2y-3z-7=0\Rightarrow \overline N=(3; -2; -3).$ Искомая плоскость проходит через точку $M_0(3, -2, -4)$ перпендикулярно вектору $\overline N(3, -2, -3).$

$P_1: 3x-9-2y-4-3z-12=0 \Rightarrow$

Далее найдем точку пересечения плоскости $P_1$ и прямой $L.$ Для этого запишем уравнение прямой $L$ в параметрической форме:

Далее, подставим значения $x, y$ и $z,$ выраженные через $t$ в уравнение плоскости $P_1,$ и из полученного уравнения выразм $t:$

Подставляя найденное занчение $t$ в уравнение прямой $L,$ найдем координаты точки пересечения:

Таким образом, прямая $L$ и плоскость $P_1$ пересекаются в точке $M_1(8, -8, 5).$

Теперь запишем уравнение прямой, проходящей через точки $M_0(3, -2. -4)$ и $M_1(8, -8, 5)$— это и будет искомая прямая. Воспользуемся формулой ( 3) $\frac=\frac=\frac :$

2.199.

б) Написать уравнение прямой, проходящей через две заданные точки $M_1 (3, -1, 0)$ и $M_2(1, 0, -3).$

б) Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $ L:$ $\left\<\beginx=3t+5,\\ y=2t,\\z=-2t-25. \end\right.$

2.206. Доказать, что прямые $L_1: \left\<\begin2x+2y-z-10=0,\\ x-y-z-22=0, \end\right.$ и $L_2: \frac<3>=\frac<-1>=\frac<4>.$ параллельны и найти расстояние $\rho(L_1, L_2)$

2.207. Составить уравнения прямой, проходящей через точки пересечения плоскости $x-3y+2z+1=0$ с прямыми $\frac<5>=\frac<-2>=\frac<-1>$ и $\frac<4>=\frac<-6>=\frac<2>.$

2.211. Написать уравнение прямой, проходящей через точку $M_0(7, 1, 0)$ параллельно плоскости $2x+3y-z-15=0$ и пересекающей прямую $\frac<1>=\frac<4>=\frac<2>.$


источники:

http://www.math.by/geometry/eqline3d.html

http://mathportal.net/index.php/analiticheskaya-geometriya/pryamaya-v-prostranstve