Составить уравнение равновесия составной балки

Определение реакций опор балки – решение задачи

Как определить реакции опор балки

Пример решения задачи на определение реакций опор балки

Жесткая балка, линейные размеры которой указаны на рисунке 1, закреплена в точках А и В. На балку действуют пара сил с моментом М, равномерно распределенная нагрузка интенсивностью q и две силы P и G, место приложения которых показано на рисунке.
Определить реакции опор балки в точках A и B, вызываемые указанными нагрузками.

Дано:
P = 20,2 Н ; G = 22,6 Н ; q = 2 Н/м ; M = 42,8 Н·м ; a = 1,3 м ; b = 3,9 м ; α = 45° ;

Решение задачи

Проводим оси x и y системы координат. Начало системы координат поместим в точку A . Ось x направим горизонтально, вдоль балки. Ось y – вертикально. Ось z перпендикулярна плоскости рисунка и направлена на нас. На рисунке она не указана.

Силы, действующие на балку.

Отбрасываем опоры и заменяем их силами реакций.
В шарнире A , разложим силу реакции на составляющие и вдоль осей координат.
Реакция , в подвижной опоре на катках, направлена вертикально. Предполагаемые направления реакций опор выбираем по своему усмотрению, наугад. Если ошибемся с направлением реакции, то получим отрицательное значение, что будет говорить о том, что соответствующая сила реакции направлена в противоположную сторону.

Заменим равномерно распределенную нагрузку q равнодействующей . Абсолютное значение равнодействующей равно площади эпюры:
Н .
Точка приложения равнодействующей находится в центре тяжести эпюры. Поскольку эпюра представляет собой прямоугольник, то ее центр тяжести находится в точке C – посередине отрезка AD :
AC = CD = b/2 = 1,95 м .

Уравнения равновесия для сил

Определяем проекции сил на оси координат.

Разложим силу на составляющие вдоль координатных осей:
.
Абсолютные значения составляющих:
.
Вектор параллелен оси x и направлен в противоположную от нее сторону. Вектор параллелен оси y и также направлен в противоположную сторону. Поэтому проекции силы на оси координат имеют следующие значения:
.

Остальные силы параллельны осям координат. Поэтому они имеют следующие проекции:
;
;
;
;
.

Составляем уравнения равновесия для сил.
Сумма проекций всех сил на ось x равна нулю:
;
;
;
(П1) .

Сумма проекций всех сил на ось y равна нулю:
;
;
;
(П2) .

Уравнения равновесия для моментов

Итак, мы уже составили два уравнения для сил: (П1) и (П2). Но в них есть три неизвестные величины: , и . Чтобы их определить, нам нужно составить еще одно уравнение.

Составим уравнение равновесия для моментов сил. Для этого нам нужно выбрать ось, относительно которой мы будем вычислять моменты. В качестве такой оси возьмем ось, проходящую через точку A , перпендикулярно плоскости рисунка. За положительное направление выберем то, которое направлено на нас. Тогда, по правилу правого винта, положительным направлением закручивания будет направление против часовой стрелки.

Находим моменты сил относительно выбранной оси.
Силы , и пересекают ось. Поэтому их моменты равны нулю:
; ; .

Сила перпендикулярна плечу AB . Ее момент:
.
Поскольку, относительно оси A , сила направлена против часовой стрелки, то ее момент положительный.

Сила перпендикулярна плечу AK . Поскольку, относительно оси A , эта сила направлена по часовой стрелки, то ее момент имеет отрицательное значение:
.

Аналогичным способом находим моменты остальных сил:
;
.
Момент от пары сил M не зависит от точек приложения сил, входящих в пару:
.

Составляем уравнение равновесия. Сумма моментов сил относительно оси A равна нулю:
;

;
;
(П3) .

Решение уравнений равновесия

Итак, для трех неизвестных величин, мы получили три уравнения:
(П1) .
(П2) .
(П3) .

Решаем эти уравнения. Вычисляем расстояния.
м;
м;
м;
м.

Из уравнения (П1) находим:
Н.
Из уравнения (П3) находим:

Н.
Из уравнения (П2) имеем:
Н.
Абсолютное значение реакции опоры в точке A :
Н.

Проверка правильности решения

Чтобы проверить, правильно ли мы определили реакции опор балки, найдем сумму моментов сил относительно другой оси. Если мы нашли реакции правильно, то она должна равняться нулю.

Возьмем ось, проходящую через точку E . Вычисляем сумму моментов сил относительно этой оси:

.
Найдем погрешность вычисления суммы моментов. Найденные силы мы округлили до двух знаков после запятой. То есть погрешность определения реакций опор составляет 0,01 Н . Расстояния, по порядку величины, примерно равны 10 м. Тогда погрешность вычисления суммы моментов составляет около 10·0,01 = 0,1 Нм . Мы получили значение -0,03 Нм . Эта величина отличается от нуля не более, чем на величину погрешности. То есть, с учетом погрешности вычислений, сумма моментов относительно другой оси равна нулю. Значит решение правильное, силы реакций найдены верно.

Второй способ решения

Первым способом мы составили два уравнения для сил и одно – для моментов. Задачу можно решить другим способом, составив два уравнения для моментов и одно для сил.

Воспользуемся тем, что сумма моментов сил равна нулю относительно любой оси. Возьмем вторую ось, которая проходит через точку B перпендикулярно плоскости рисунка. Сумма моментов сил относительно этой равна нулю:
.
Вычисляем моменты сил относительно оси B .
; ; ;
;
;
;
;
.

Сумма моментов сил относительно оси B равна нулю:
;

;
;
(П4) ;

Итак, вторым способом, мы также имеем три уравнения:
(П1) .
(П3) ;
(П4) .

Здесь каждое уравнение содержит только одну неизвестную величину. Реакции и определяются из тех же уравнений, что и ранее. Находим силу из уравнения (П4):

Н.

Значение реакции совпало со значением, полученным первым способом из уравнения (П2).

Автор: Олег Одинцов . Опубликовано: 14-10-2017 Изменено: 28-12-2021

iSopromat.ru

Для плоской системы нагружения, при определении опорных реакций и внутренних силовых факторов исходя из условия равновесия системы, можно составить только три уравнения статики.

Ранее были показаны примеры составления уравнений равновесия для пространственной и плоской систем сил.

При плоском поперечном изгибе можно записать только два уравнения. Это частный случай плоского нагружения. В этом случае все силы приложенные к балке расположены нормально к ее оси, т. е. не дают проекций на ось балки.

В результате имеем следующие уравнения статики:

  1. Сумма проекций всех сил на вертикальную ось равна нулю
  2. Сумма моментов относительно любой точки системы тоже равна нулю.

Эти уравнения являются уравнениями равновесия рассматриваемой балки находящейся под действием комплекса нагрузок.

Рассмотрим пример плоского поперечного изгиба, когда все внешние силы имеют исключительно вертикальное направление.

Уравнения статики

Сумма проекций всех сил на ось Y:

Здесь силы и нагрузки записаны в соответствии с правилом знаков для проекций сил.

Равнодействующая распределенной нагрузки определяется произведением ее интенсивности на длину.

Проекции сил на ось Z в данном случае равны нулю:

Сумма моментов всех нагрузок, например, относительно точки A :

Дополнительные материалы

  • Порядок определения момента от распределенной нагрузки.
  • Правила знаков при составлении уравнений статики для систем находящихся в равновесии.

Совместное решение системы полученных уравнений позволяет определить величину и направление двух неизвестных усилий.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Решение задач, контрольных и РГР

Стоимость мы сообщим в течение 5 минут
на указанный вами адрес электронной почты.

Если стоимость устроит вы сможете оформить заказ.

НАБОР СТУДЕНТА ДЛЯ УЧЁБЫ

— Рамки A4 для учебных работ
— Миллиметровки разного цвета
— Шрифты чертежные ГОСТ
— Листы в клетку и в линейку

Расчет составной конструкции в теоретической механике

Расчет составной конструкции:

Постановка задачи. Плоская рама состоит из двух частей, соединенных одним шарниром. На раму действует момент и силы. Учитывая погонный вес, найти реакции опор.

Составная конструкция, состоящая из двух тел, соединенных шарниром содержит четыре неизвестные реакции опор. Так как для одного тела под действием плоской системы сил можно составить только три независимых уравнения равновесия, то для определения реакций необходимо рассматривать равновесие каждой части составной конструкции в отдельности.

1. Разбиваем систему на два тела по сочленяющему шарниру. В месте разбиения прикладываем реакции отброшенной части. Внешние связи заменяем их реакциями.

2. Для каждого тела, образованного при разбиении, составляем по три уравнения равновесия.

3. Решаем систему шести уравнений. Определяем реакции опор.

4. Делаем проверку решения, составляя уравнения равновесия целой (нерасчлененной) системы.

1. Разбиваем систему на два тела по сочленяющему шарниру. В месте разбиения прикладываем реакции отброшенной части. Внешние связи заменяем их реакциями.

2. Для каждого тела, образованного при разбиении, составляем уравнения моментов относительно точки сочленения. Полученные уравнения дополняем двумя уравнениями равновесия для всей конструкции в целом.

3. Решаем систему четырех уравнений. Определяем реакции опор.

4. Делаем проверку решения, составляя уравнения равновесия целой (нерасчлененной) системы.

Задача №1

Плоская рама состоит из двух частей, соединенных в точке С шарниром. На раму действует момент М = 100 кНм, горизонтальная сила Р = 20 кН и наклонная сила Q = 10 кН. Учитывая погонный вес р = 4 кН/м, найти реакции опор (рис. 40). Дано:

2.4. Расчет составной конструкции

1. Разбиваем конструкцию на два тела по сочленяющему шарниру С. Получаем две части (рис. 41-42). Внешние связи конструкции заменяем реакциями.

В точке А прикладываем реакции в точке Е — реакции и К каждому телу в точке С прикладываем реакции отброшенной части. Согласно 3-му закону Ньютона, реакции для разных частей равны по величине и направлены в противоположные стороны.

Система уравнений равновесия двух тел, образованных при разбиении, замыкается — имеем шесть уравнений равновесия (по три уравнения на каждую часть) и шесть неизвестных

2. Для каждой отдельной части составляем по три уравнения равновесия:

3. Решаем систему (1-6) относительно неизвестных Можно использовать любой способ решения системы линейных уравнений Рекомендуем наиболее эффективный для таких систем метод исключения Гаусса.

Если для решения использовать компьютер, систему лучше записать в матричном виде, предварительно вычислив правые части системы (1-6) и коэффициенты при неизвестных. Величины сил тяжести участков вычисляем через погонный вес по формуле где L — длина соответствующего участка. В нашем случае

Система (1-6) имеет следующий матричный вид:

2.4.Расчет составной конструкции

Результаты расчетов в кН заносим в таблицу:

4. Делаем проверку решения, составляя уравнения равновесия для целой (нерасчлененной) системы (рис. 43):

1. Разбиваем конструкцию на два тела по сочленяющему шарниру С. Получаем две части (рис. 41-42). Внешние связи конструкции заменяем реакциями.

2. Относительно шарнира С для каждой части конструкции составляем уравнения моментов (3) и (6). Для всей системы в целом составляем уравнения моментов (7,8) относительно опор А и Е.

3. Решаем систему четырех уравнений (3,6,7,8) относительно четырех неизвестных, замечая, что система распадается на две: уравнения (3) и (7) для и уравнения (6) и (8) для

4. Делаем проверку решения, составляя уравнения равновесия целой (нерасчлененной) системы (рис. 43):

2.5. Конструкция с распределенными нагрузками

Конструкция с распределенными нагрузками

постановка задачи. Найти реакции опор плоской составной рамы, находящейся под действием линейно распределенной нагрузки и нагрузки, равномерно распределенной по дуге окружности.

1. Внешние связи заменяем реакциями. Разбиваем систему на два тела по сочленяющему шарниру. К каждой из образовавшихся частей прикладываем реакции шарнира, помня о том, что части взаимодействуют с силами равными по величине и противоположными по направлению.

2. Линейную нагрузку с максимальным значением распределенную по треугольнику, заменяем на сосредоточенную в центре тяжести треугольника (1/3 длины участка L нагрузки, считая от прямого угла). Значение нагрузки вычисляем по формуле площади треугольника

3. Нагрузку q, равномерно распределенную по дуге окружности радиусом R с центральным углом заменим ее равнодействующейнаправленной по биссектрисе центрального угла ([19], §21).

4. Для каждого тела составляем по три уравнения равновесия.

5. Решаем систему шести уравнений. Определяем реакции опор.

6. Делаем проверку решения, составляя уравнения равновесия для целой (нерасчлененной) системы.

Задача №2

Найти реакции опор плоской составной рамы, находящейся под действием линейно распределенной нагрузки с максимальной интенсивностью на вертикальном участке рамы АВ

и нагрузки с интенсивностью равномерно распределенной по дуге СК окружности с центром в точке О (рис. 44). АВ = 3 м, ВС = 6 м, DE = 4 м, R = 5 м,


Решение

1. Внешние связи заменяем реакциями Число неизвестных реакций больше трех. Следовательно, для решения задачи необходимо разбить конструкцию на две и рассмотреть равновесие каждой образовавшейся части(рис.45-46)

При разбиении по шарниру к каждой из частей прикладываем реакции шарнира, помня о том, что части взаимодействуют с силами, равными по величине и противоположными по направлению.

2. Нагрузку, распределенную по линейному закону, заменяем сосредоточенной приложенной к раме на расстоянии АВ/3 от максимального значения в том же направлении (рис. 45). Величина равнодействующей вычисляется по формуле площади прямоугольного треугольника с катетами

3. Нагрузку с интенсивностью равномерно распределенную по дуге СК, заменяем ее равнодействующей

направленной по биссектрисе угла (рис. 47). Так как , то величина совпадает со значением равнодействующей нагрузки, равномерно распределенной по хорде СК, той же интенсивности . Воспользуемся тем, что вектор силы в теоретической механике является скользящим. Для удобства вычисления момента силы переносим точку ее приложения вдоль линии действия силы в центр окружности О. То, что точка О не принадлежит раме, и сила как-бы «зависает» в воздухе, не должно смущать. Твердое тело CDE можно мысленно расширить до точки О, давая, таким образом, силе реальную точку приложения.

4. Составляем уравнения равновесия частей рамы:

5. Решаем систему (1) шести уравнений с шестью неизвестными. Результаты расчетов в кН заносим в таблицу:

Гл.2.Произвольная плоская система сил

6. Выполняем проверку решения — составляем уравнения моментов для всей системы в целом (рис. 48):

Замечание. Можно предложить второй способ решения задачи, рассмотренный в предыдущем параграфе (с. 54). Для каждого тела, образованного при разбиении, составляем уравнения моментов относительно точки сочленения С. Полученные уравнения дополняем двумя уравнениями равновесия для всей конструкции в целом (рис. 48).

Для данного примера это уравнения моментов относительно опорных шарниров А и Е.

Расчет системы трех тел, соединенных шарниром

Постановка задачи. Определить реакции опор конструкции, состоящей из трех тел, соединенных в одной точке шарниром.

1. Расчленяем конструкцию на три отдельных тела и сочленяющий шарнир в качестве четвертого тела. Считая, что каждое из трех тел в точке сочленения взаимодействует только с осью шарнира, действие оси шарнира на тело заменяем ее реакциями.

2. Записываем по три уравнения равновесия для каждого из тел и два уравнения равновесия в проекциях для системы сил, приложенных к оси шарнира.

3. Решаем систему 11 уравнений с 11 неизвестными.

4. Выполняем проверку решения, составляя дополнительное уравнение равновесия для нерасчлененной конструкции.

Задача №3

Определить реакции опор конструкции, состоящей из трех тел, соединенных в точке С шарниром. В точке В конструкция опирается на неподвижный шарнир, в точках D и Е — подвижные шарниры, в точке А — горизонтальный опорный стержень. На конструкцию действуют силы F — 40 кН, Р — 20 кН, Q — 10 кН и сосредоточенные моменты (рис. 49); Размеры на рисунке указаны в метрах.

1. Расчленяем конструкцию на три отдельных тела ADC, СВ, СЕ и сочленяющий шарнир С в качестве четвертого тела. Считая, что каждое из трех тел в точке сочленения взаимодействует только с осью шарнира С, действие оси шарнира на тело заменяем ее реакциями (рис. 50).

2. Для каждого из тел (АС, ВС, ЕС) записываем по три уравнения равновесия — два уравнения проекций и уравнение моментов относительно точки С . Для системы сил, сходящихся в шарнире С, составляем два уравнения равновесия в проекциях (рис. 50). Получаем следующую систему уравнений:

4. Решаем систему 11 уравнений с 11 неизвестными четов в кН записываем в таблицу:

5. Выполняем проверку решения, составляя дополнительное уравнение равновесия для нерасчлененной системы (рис. 51). Моментную точку К выбираем так, чтобы в уравнения вошли все проверяемые величины

В качестве моментной точки можно выбирать любую, в том числе и не принадлежащую телу.

Замечание. Предложенный способ расчета не является единственным. Например, если из трех частей, соединенных в одном шарнире, можно отделить одну, имеющую в качестве опоры подвижный шарнир (часть СЕ, рис. 50), то получится система двух тел, одно из которых (СЕ) имеет три неизвестные реакции. Определить эти реакции можно из системы трех уравнений равновесия этой части.

Затем следует рассмотреть оставшуюся часть, состоящую их двух еще нерасчлененных тел. В качестве дополнительной нагрузки к ним будет приложены (в противоположную сторону) две реакции отброшенной третьей части.

Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Момент силы относительно оси
  • Равновесие вала
  • Определение усилий в стержнях, поддерживающих плиту
  • Тело на сферической и стержневых опорах
  • Определение передаточных отношений различных передач
  • Задачи на поступательное движение тела
  • Задачи на вращательное движение тела
  • Равновесие тяжелой рамы

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://isopromat.ru/sopromat/otvet/uravnenia-statiki-dla-balki

http://www.evkova.org/raschet-sostavnoj-konstruktsii-v-teoreticheskoj-mehanike