Составить уравнение реакции горения водорода в воздухе

Температура горения водорода: описание и условия реакции, применение в технике

Одной из актуальных проблем является загрязнение окружающей среды и ограниченность энергетических ресурсов органического происхождения. Многообещающим способом решения этих проблем является использование водорода в качестве источника энергии. В статье рассмотрим вопрос горения водорода, температуру и химию этого процесса.

Что такое водород?

Прежде чем рассматривать вопрос, какая температура сгорания водорода, необходимо вспомнить, что собой представляет это вещество.

Вам будет интересно: Эрвин Роммель, немецкий генерал-фельдмаршал: биография, семья, военная карьера, причина смерти

Водород — это самый легкий химический элемент, состоящий всего из одного протона и одного электрона. При нормальных условиях (давление 1 атм., температура 0 oC) он присутствует в газообразном состоянии. Его молекула (H2) образована 2 атомами этого химического элемента. Водород является 3-м по распространенности элементом на нашей планете, и 1-м во Вселенной (около 90 % всей материи).

Вам будет интересно: Чтение вслух: польза для взрослых и детей. Тексты для развития речи и дикции

Водородный газ (H2) не имеет запаха, вкуса и цвета. Он не токсичен, однако, когда содержание его в атмосферном воздухе составляет несколько процентов, то человек может испытывать удушье, по причине недостатка кислорода.

Любопытно отметить, что хотя с химической точки зрения все молекула H2 идентичны, физические свойства их несколько отличаются. Дело все в ориентации спинов электронов (они ответственны за появление магнитного момента), которые могут быть параллельными и антипараллельными, такую молекулу называют орто- и параводородом, соответственно.

Химическая реакция горения

Рассматривая вопрос, температуры горения водорода с кислородом, приведем химическую реакцию, которая описывает этот процесс: 2H2 + O2 => 2H2O. То есть в реакции участвуют 3 молекулы (две водорода и одна кислорода), а продуктом являются две молекулы воды. Эта реакция описывает горение с химической точки зрения, и по ней можно судить, что после ее прохождения остается только чистая вода, которая не загрязняет окружающую среду, как это происходит при сгорании органического топлива (бензина, спирта).

Вам будет интересно: Кемерово: история города, основание, интересные факты, фото

С другой стороны, эта реакция является экзотермической, то есть помимо воды она выделяет некоторое количества тепла, которое можно использовать для приведения в движение машин и ракет, а также для его перевода в другие источники энергии, например, в электричество.

Механизм процесса горения водорода

Описанная в предыдущем пункте химическая реакция известна любому школьнику старших классов, однако она является очень грубым описанием того процесса, который происходит в действительности. Отметим, что до середины прошлого века человечество не знало, как происходит горение водорода в воздухе, а в 1956 году за ее изучение была присуждена Нобелевская премия по химии.

В действительности, если столкнуть молекулы O2 и H2, то никакой реакции не произойдет. Обе молекулы являются достаточно устойчивыми. Чтобы горение происходило, и образовывалась вода, необходимо существование свободных радикалов. В частности, атомов H, O и групп OH. Ниже приводится последовательность реакций, которые происходят в действительности при горении водорода:

  • H + O2 => OH + O;
  • OH + H2 => H2O + H;
  • O + H2 = OH + H.

Что видно из этих реакций? При горении водорода образуется вода, да, верно, но происходит это только, когда группа из двух атомов OH встречается с молекулой H2. Кроме того, все реакции происходят с образованием свободных радикалов, это означает, что запускается процесс самоподдержания горения.

Таким образом, ключевой момент в запуске этой реакции заключается в образовании радикалов. Они появляются, если поднести к кислород-водородной смеси горящую спичку, либо если нагреть эту смесь выше определенной температуры.

Инициация реакции

Как было отмечено, сделать это можно двумя способами:

  • С помощью искры, которая должна предоставить всего 0,02 мДж теплоты. Это очень маленькое значение энергии, для сравнения скажем, что аналогичное значение для бензиновой смеси составляет 0,24 мДж, а для метановой — 0,29 мДж. С уменьшением давления энергия инициации реакции растет. Так, при 2 кПа она составляет уже 0,56 мДж. В любом случае, это очень маленькие значения, поэтому водород-кислородная смесь считается легко воспламеняющейся.
  • С помощью температуры. То есть кислород-водородную смесь можно просто нагревать, и выше некоторой температуры она сама воспламенится. Когда это произойдет, зависит от давления и процентного соотношения газов. В широком интервале концентраций при атмосферном давлении реакция самовозгорания происходит при температурах выше 773-850 К, то есть выше 500-577 oC. Это достаточно высокие значения по сравнению с бензиновой смесью, которая начинает самовоспламеняться уже при температурах ниже 300 oC.

Процентное содержание газов в горючей смеси

Вам будет интересно: Методика преподавания математики в школе: особенности и рекомендации

Говоря о температуре горения водорода в воздухе, следует отметить, что не всякая смесь этих газов будет вступать в рассматриваемый процесс. Экспериментально установлено, что если количество кислорода меньше 6% по объему, либо если количество водорода меньше 4% по объему, то никакой реакции не будет. Тем не менее, пределы существования горючей смеси являются достаточно широкими. Для воздуха процентное содержание водорода может составлять от 4,1 % до 74,8 %. Отметим, что верхнее значение как раз соответствует необходимому минимуму по кислороду.

Если же рассматривается чистая кислород-водородная смесь, то здесь пределы еще шире: 4,1-94 %.

Уменьшение давления газов приводит к сокращению указанных пределов (нижняя граница поднимается, верхняя — опускается).

Также важно понимать, что в процессе горения водорода в воздухе (кислороде), возникающие продукты реакции (вода) приводят к уменьшению концентрации реагентов, что может привести к прекращению химического процесса.

Безопасность горения

Это важная характеристика воспламеняющейся смеси, поскольку она позволяет судить о том, происходит реакция спокойно, и можно ее контролировать, либо процесс имеет взрывной характер. От чего зависит скорость горения? Конечно же, от концентрации реагентов, от давления, а также от количества энергии «затравки».

К большому сожалению, водород в широком интервале концентраций способен к взрывному горению. В литературе приводятся следующие цифры: 18,5-59 % водорода в воздушной смеси. Причем на краях этого предела в результате детонации выделяется наибольшее количество энергии на единицу объема.

Отмеченный характер горения представляет большую проблему для использования этой реакции в качестве контролируемого источника энергии.

Температура реакции горения

Теперь мы подошли непосредственно к ответу на вопрос, какая низшая температура сгорания водорода. Она составляет 2321 К или 2048 oC для смеси с 19,6 % H2. То есть температура горения водорода в воздухе выше 2000 oC (для других концентраций она может достигать 2500 oC), и в сравнении с бензиновой смесью — это огромная цифра (для бензина около 800 oC). Если сжигать водород в чистом кислороде, то температура пламени будет еще выше (до 2800 oC).

Столь высокая температура пламени представляет еще одну проблему в использовании этой реакции в качестве источника энергии, поскольку не существует в настоящее время сплавов, которые могли бы работать длительное время в таких экстремальных условиях.

Конечно, эта проблема решается, если использовать хорошо продуманную систему охлаждения камеры, где происходит горение водорода.

Количество выделяемой теплоты

В рамках вопроса температуры горения водорода любопытно также привести данные о количестве энергии, которая выделяется во время этой реакции. Для разных условий и составов горючей смеси получили значения от 119 МДж/кг до 141 МДж/кг. Чтобы понять, насколько это много, отметим, что аналогичное значение для бензиновой смеси составляет около 40 МДж/кг.

Энергетический выход водородной смеси намного выше, чем для бензина, что является огромным плюсом для ее применения в качестве топлива для двигателей внутреннего сгорания. Однако, и здесь не все так просто. Все дело в плотности водорода, она слишком низка при атмосферном давлении. Так, 1 м3 этого газа весит всего 90 грамм. Если сжечь этот 1 м3 H2, то выделится около 10-11 МДж теплоты, что уже в 4 раза меньше, чем при сжигании 1 кг бензина (чуть больше 1 литра).

Приведенные цифры говорят о том, что для использования реакции горения водорода необходимо научиться хранить этот газ в баллонах с высоким давлением, что создает уже дополнительные сложности, как в технологическом вопросе, так и с точки зрения безопасности.

Применение водородной горючей смеси в технике: проблемы

Сразу необходимо сказать, что в настоящее время водородная горючая смесь уже используется в некоторых сферах человеческой деятельности. Например, в качестве дополнительного топлива для космических ракет, в качестве источников для выработки электрической энергии, а также в экспериментальных моделях современных автомобилей. Однако масштабы этого применения являются мизерными, по сравнению с таковыми для органического топлива и, как правило, носят экспериментальных характер. Причиной этому являются не только трудности в контроле самой реакции горения, но также в хранении, транспортировке и добыче H2.

Водород на Земле практически не существует в чистом виде, поэтому его необходимо получать из различных соединений. Например, из воды. Это достаточно популярный способ в настоящее время, который осуществляется с помощью пропускания электрического тока через H2O. Вся проблема заключается в том, что при этом расходуется больше энергии, чем потом можно получить путем сжигания H2.

Еще одна важная проблема — транспортировка и хранение водорода. Дело в том, что этот газ, ввиду маленьких размеров его молекул, способен «вылетать» из любых контейнеров. Кроме того, попадая в металлическую решетку сплавов, он вызывает их охрупчивание. Поэтому наиболее эффективным способом хранения H2 является использование атомов углерода, способных прочно связывать «неуловимый» газ.

Таким образом, применение водорода в качестве топлива в более-менее широких масштабах возможно, только если его использовать в качестве «сохранения» электричества (например, переводить ветровую и солнечную энергию в водород с помощью электролиза воды), либо если научиться доставлять H2 из космоса (где его очень много) на Землю.

Расчеты горения

Расчеты горения ведут по химическим уравнениям реакций, используя законы газового состояния: Бойля – Мариотта , Гей-Люссака , Шарля и Клапейрона – Менделеева . Используется также закон Авогадро, согласно которому один грамм-моль любого газа при нормальных условиях (Т = 273 К, Р = 760 мм рт. ст.) занимает одинаковый объём – 22,4 дм 3 . Соответственно один кг-моль – 22,4 м 3 .

Рассмотрим реакцию горения водорода в кислороде: . Из уравнения следует, что при нормальных условиях для полного сгорания 2 × 22,4 = 44,8 м 3 водорода требуется 22,4 м 3 кислорода. Обычно для простоты и удобства расчеты ведут на один кубометр сжигаемого газа, т.е. для сгорания 1 м 3 водорода требуется 0,5 м 3 кислорода.

Рассмотрим реакцию горения метана в кислороде: . Из уравнения следует, что для полного сгорания 22,4 м 3 метана требуется 2 × 22,4 = 44,8 м 3 кислорода. Следовательно, для сгорания 1 м 3 метана необходимо 2 м 3 кислорода.

В практических условиях сжигание газа осуществляется в воздухе. Примем состав сухого воздуха: О2 – 21 %, N2 – 79%. Следовательно, 1 м 3 кислорода содержится в 100/21 = 4,76 м 3 воздуха. Или на 1 м 3 кислорода приходится 3,76 м 3 азота. Отсюда условная формула воздуха: (О2 + 3,76N2).

Запишем реакцию горения водорода в воздухе:

.

Из уравнения следует, что при нормальных условиях для полного сгорания 1 м 3 водорода требуется 0,5 × 4,76 = 2,38 м 3 воздуха. Таким образом, для сгорания 1 м 3 водорода требуется 2,38 м 3 воздуха. В результате образуются продукты сгорания: 1 м 3 воды в виде пара и 1,88 м 3 азота.

Запишем реакцию горения метана в воздухе:

.

Из уравнения следует, что для полного сгорания 1 м 3 метана необходимо 2 × 4,76 = 9,52 м 3 воздуха. Таким образом, при нормальных условиях для сгорания 1 м 3 метана требуется 9,52 м 3 сухого воздуха. Продукты сгорания содержат 1 м 3 диоксида углерода, 2 м 3 паров воды и 7,52 м 3 азота.

Запишем реакцию горения пропана в воздухе:

.

Из уравнения видно, что для полного сгорания 1 м 3 пропана необходимо 5 × 4,76 = 23,8 м 3 воздуха. Таким образом, при нормальных условиях для сгорания 1 м 3 пропана требуется 23,8 м 3 сухого воздуха.

Приведенные расчеты выполнены для стехиометрических уравнений и полученные соотношения воздуха и газа называются стехиометрическими. Например, для горения метана в воздухе стехиометрическое соотношение – 9,52. В реальных условиях воздуха может не хватать для полного сгорания газа или, напротив, воздух подается в избыточном количестве. Для характеристики реальных соотношений воздуха и газа в процессе горения введена безразмерная величина: коэффициент избытка воздуха (окислителя) – коэффициент α. Для стехиометрического соотношения α = 1. Если имеет место недостаток воздуха, то α 1. Например, в процессе горения израсходовано 23 м 3 воздуха и 2 м 3 метана. Подсчитываем коэффициент α. Реальное соотношение воздуха и газа 23/2 = 11,5. Отсюда α = 11,5/9,52 = 1,2.

Выше показано, как можно подсчитывать необходимое количество воздуха для сгорания и определять объем продуктов сгорания для индивидуальных газов. Но обычно используемый газ – смесь различных газов. В этом случае расчет теоретически необходимого объема воздуха (воздуха сухого) ведется по формуле:

нм 3 /нм 3 , (10.4)

где – соответственно объемное процентное содержание данных газов в исходной смеси.

Используемый для сжигания атмосферный воздух содержит влагу, поэтому расчет объема влажного воздуха производят по формуле:

нм 3 /нм 3 , (10.5)

где – влагосодержание воздуха, г/нм 3 ;

0,00124 – объем 1 г водяного пара.

И, наконец, определяется объем воздуха действительный с учетом величины коэффициента α по формуле:

. (10.6)

Пример. Имеется газ состава СН4 – 95%, С3Н8 – 5%. Определить объем воздуха действительного для сжигания данного газа при α = 1,1 и = 10 г/м 3 .

, нм 3 /нм 3 ,

, нм 3 /нм 3 ,

, нм 3 /нм 3 .

Объем продуктов сгорания газовой смеси определяется по следующим формулам.

Объем диоксида углерода

, нм 3 /нм 3 . (10.7)

Объем водяных паров

, нм 3 /нм 3 . (10.8)

, нм 3 /нм 3 . (10.9)

где N2 – процентное содержание азота в газовой смеси.

, нм 3 /нм 3 . (10.10)

Суммарный объем продуктов сгорания

, нм 3 /нм 3 . (10.11)

Дата добавления: 2015-06-22 ; просмотров: 8135 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

СОСТАВЛЕНИЕ УРАВНЕНИЙ РЕАКЦИЙ ГОРЕНИЯ ВЕЩЕСТВ В ВОЗДУХЕ

Горением называется сложный физико-химический процесс, представляющий собой окислительно-восстановительную реакцию между горючим веществом и окислителем, сопровождающийся выделением тепла и излучением света. Для горения необходимо наличие трёх составляющих: горючего вещества; окислителя (кислород воздуха, озон, перекись водорода, галогены, перманганат калия, хромовый ангидрид и т. д.) и благоприятствующего фактора (источник зажигания; физико-химический или биологический процесс, протекающий с выделением тепла, нагретая поверхность).

С точки зрения электронной теории, горение – это перераспределение валентных электронов между горючим веществом и окислителем.

Горючим веществом называется вещество, атомы (молекулы) которого способны отдавать в процессе реакции свои валентные электроны. Горючее вещество в процессе реакции окисляется, образуя продукты окисления.

Окислителем называется вещество, атомы (молекулы) которого способны присоединять валентные электроны в процессе реакции. Окислитель в ходе реакции восстанавливается.

Процесс горения как одна из форм химического взаимодействия атомов и молекул может по-настоящему понятен только на основе изучения молекулярно-кинетической теории строения материи. Необходимо представлять, что в химических процессах, прежде чем образуются новые молекулы, разрушаются старые. Энергия, необходимая для разрыва связей в молекулах горючего и окислителя, называется энергией активации. Разрушение или ослабление химических связей в молекулах происходит под действием теплового движения атомов. Чем выше температура, тем выше доля активных молекул, тем эффективнее соударения и больше их число. Для реакции горения, как и для многих других химических реакций, справедливо положение: повышение температуры на 10 о С приводит к увеличению её скорости в 2–4 раза (правило Вант-Гоффа). Кроме того, скорость реакции согласно закону действующих масс увеличивается с возрастанием концентрации реагентов. Скорость горения максимальна при стехиометрическом составе смеси – когда отношение реагентов соответствует коэффициентам в уравнении реакции.

В условиях пожара горение чаще всего протекает в среде воздуха. При составлении уравнения материального баланса процессов горения принято учитывать не только кислород, принимающий участие в реакции окисления, но и азот, входящий в состав воздуха. Воздух состоит из азота, кислорода, водорода, углекислого и инертных газов. При ведении теоретических расчётов водород, углекислый газ и инертные газы (их вместе взятых в воздухе около 1 %) причисляют к азоту, которого в воздухе 78 %. Поэтому можно принять, что воздух состоит из 21 % кислорода и 79 % азота. Не трудно установить, что на 1 объём кислорода в воздухе приходится 3,76 объёма азота (79 : 21 = 3,76) или на 1 моль кислорода приходится 3,76 моля азота и, таким образом, состав воздуха в уравнениях реакций горения – 2 + 3,76 N2).

В реакции горения принимает участие только кислород. Азот в реакцию не вступает и выделяется из зоны горения вместе с продуктами горения. В левой части уравнения реакции горения записывают горючее вещество и воздух, в правой части – продукты горения. При уравнивании левой и правой частей уравнения реакции горения коэффициент перед горючим веществом для упрощения расчётов параметров процесса горения, как правило, не ставят, т.е. принимают равным единице, в связи с чем коэффициент перед воздухом может получаться дробным.

Для решения задач по определению основных параметров, характеризующих процесс горения, необходимо уметь составлять уравнения реакций горения горючих веществ в воздухе.

Обобщённая запись брутто-уравнения материального баланса реакции горения имеет вид:

где nг.в, nо, nпгi – стехиометрические коэффициенты при соответствующих веществах: [г.в.] – горючее вещество, [о] – окислитель, [пг] – продукты горения.

Данное уравнение является обобщённым выражением материального баланса любой химической реакции окисления. Оно не несёт информации о промежуточных стадиях процесса, которых может быть великое множество, а выражает только начальное и конечное состояние системы. Поэтому его называют также суммарным или брутто-уравнением реакции горения. Для решения многих инженерно-технических задач этого уравнения бывает достаточно.

Рассмотрим примеры составления уравнений реакций горения горючих веществ в воздухе.

ПРИМЕР: Составить уравнение реакции горения пропана (С3Н8) в воздухе.

При горении углеводородов в воздухе продуктами горения будут углекислый газ (СО2), пары воды (Н2О) и азот (N2) из воздуха:

Уравняем эту реакцию, в результате чего число атомов каждого элемента в правой части уравнения будет равно числу атомов этих элементов в левой части.

Углерода в молекуле пропана 3 атома, следовательно, в продуктах горения образуется 3 молекулы углекислого газа. Атомов водорода в молекуле пропана 8, следовательно, в продуктах горения образуется 4 молекулы воды, так как в молекуле Н2О два атома водорода (8: 2 = 4). В последнюю очередь уравнивается число атомов кислорода. Подсчитываем число атомов кислорода в правой части уравнения: число атомов кислорода в 3 молекулах СО2 равно 6 (3 * 2 =6); число атомов кислорода в 4 молекулах воды равно 4 (4 * 1 = 4). Всего в правой части получается 10 атомов кислорода (6 + 4 = 10), следовательно, в левой части перед скобкой мы должны поставить коэффициент равный 5 (10 : 2 = 5), т. к. в молекуле кислорода 2 атома. Коэффициент перед азотом в продуктах горения будет равен коэффициенту перед скобкой воздуха, умноженному на 3,76.

Окончательная запись уравнения реакции горения пропана в воздухе имеет вид:

Коэффициент, стоящий перед скобкой воздуха, называется стехиометрическим коэффициентом реакции горения и обозначается β. В нашем случае β = 8.

При горении кислородосодержащих соединений в воздухе уравнивание реакции происходит аналогично. Однако при уравнивании атомов кислорода нужно учесть количество атомов кислорода, содержащихся в горючем веществе, которые тоже участвуют в реакции.

Для этого из количества атомов кислорода в правой части уравнения реакции нужно вычесть количество атомов кислорода, содержащихся в горючем веществе, а потом уже делить на 2.

ПРИМЕР: Составить уравнение реакции горения пропилового спирта в воздухе.

Углерода в молекуле пропилового спирта 3 атома, следовательно, в продуктах горения образуется 3 молекулы углекислого газа. Атомов водорода в молекуле 8, следовательно, в продуктах горения образуется 4 молекулы воды, так как в молекуле Н2О два атома водорода (8 : 2 = 4). В последнюю очередь уравнивается число атомов кислорода. Подсчитываем число атомов кислорода в правой части уравнения: число атомов кислорода в 3 молекулах СО2 равно 6 (3 * 2 =6); число атомов кислорода в 4 молекулах воды равно 4 (4 * 1 = 4). Всего в правой части получается 10 атомов кислорода (6 + 4 = 10), следовательно, в левой части перед скобкой мы должны поставить коэффициент равный 4,5 (10 — 1 = 9; 9: 2 = 4, 5). Коэффициент перед азотом в продуктах горения будет равен коэффициенту перед скобкой воздуха, умноженному на 3, 76.

Окончательная запись уравнения реакции горения пропилового спирта в воздухе имеет вид:

Если в состав горючего вещества входит галоген и горючее вещество не содержит водород, то в продуктах горения он будет выделяться в свободном виде (Cl2, Br2 и т. д.). Если же горючее вещество содержит водород, то в продуктах горения он будет выделяться в соединении с водородом, например хлороводород (НCl).

Если в состав горючего вещества входят сера, алюминий, кремний и др., то в продуктах горения будут выделяться оксиды этих элементов (SO2, Al2O3, SiO2). При горении веществ, содержащих азот, он выделяется в виде чистого газа азота (N2) и записывается отдельно от азота, содержащегося в воздухе.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1.Написать структурные формулы,составить уравнения реакций горения горючих веществ в воздухе и рассчитать стехиометрические коэффициенты.

1.1.амилбензол, абиетиновая кислота, аллиламин;

1.2.амилдифенил, адипиновая кислота, аллилизотиоцианат;

1.3.амилен, акриловая кислота, альнафт;

1.4.амилнафталин, аллилацетат, альтакс;

1.5.амилтолуол,аллилидендиацетат,амиламин;

1.6.антрацен, аллилкапроат, амилнитрат;

1.7.аценафтен, аллиловьiй спирт, амилнитрит;

1.8.ацетилен, амилацетат, амилсульфид;

1.9.бензол,амилбутират,амилтрихлорсилан;

1.10.бутилбензол, амилксилиловый эфир, амилхлорнафталин;

1.11.бутилциклогексан, амиллаурат, аминалон;

1.12.бутилциклопетан, амилметилкетон, аминоазокраситель;

1.13.гексадекан, амилолеат, аминокапроновая кислота;

1.14.гексан, амилсалицилат, аминопеларгоновая кислота;

1.15.гексилциклопентан, амилстеарат, аминоциклогексан;

1.16.гептадекан, амилфенилметиловый эфир, ампициллин;

1.17.гептан, амнлфениловый эфир, ангинин;

1.18.декан, амилформиат, анилин;

1.19.диамилбензол, анизол, антримид;

1.20.диамилнафталин, ацеталь, атофан;

1.21.дивинилацетилен, ацетальдегид, ацеклидин;

1.22.дигидроциклопентадиен, ацетилацетон, ацетанилид;

1.23.диизобутилен, ацетисалициловая кислота, ацетилхлорид;

1.24.диизопропилбензол, ацетилтрибутилцитрат, ацетоацетанилид;

1.25.диметиленциклобутан, ацетометоксан, ацетонитрил;

1.26.дитолилметан, ацетон, ацетоксим;

1.27.дифенил, ацетонилацетон, ацетоэтиламид;

1.28.дифенилметан, ацетопропиловый спирт, бензамид;

1.29.диэтилциклогексан, ацетоуксусный эфир, бензилдиэтиламин;

1.30.додекан, ацетофенон, бензилтиол;

1.31.изобутилбензол, бензальдегид, бензилхлорид;

1.32.изобутилциклогексан, бензантрон, бензилцианид;

1.33.изооктан, бензгидрол, бензимидазол;

1.34.изопентан, бензилацетат, бензоат натрия;

1.35.изопрен, бензилбензоат, бензоилхлорид;

1.36.изопропенилбензол, бензилсалицилат, бензоксазолон;

1.37.изопропилацетилен, бензилцеллозольв, бензолсульфазид;

1.38.метилциклогексан, бензилэтиловый эфир, бензолсульфамид;

1.39.метилциклопентан, бензилянтарная кислота, бензолсульфокислота;

1.40.октилтолуол, метоксибутилацетат, бензонитрил.

2.Написать структурные формулы и определить при сгорании какого горючего вещества выделится большее число молей продуктов горения?

2.1.бензофенон и бензофенонтетракарбоновая кислота;

2.2.борнеол и бутаналь;

2.3.бутановая кислота и бутилацетат;

2.4.бутилацетилрицинолеат и бутилацетоацетат

2.5.бутилбензилсебацинат и бутилбензоат;

2.6.бутилбутират и бутилвиниловый эфир;

2.7.бутилгликоль и бутилгликольацетат;

2.8.бутилглицидный эфир и бутилдиэтиладипинат;

2.9.бутилизовалериат и бутилкапронат;

2.10.бутилкарбитол и бутиллактат;

2.11.бутиллаурат и бутилметакрилат;

2.12.бутилметилкетон и бутилолеат;

2.13.бутилпропионат и бутилрициноолеат;

2.14.бутилстеарат и бутилфениловый эфир;

2.15.бутилформиат и бутилэтилацетальдегид;

2.16.бутилэтилкетон и бутилэтиловый эфир;

2.17.валериановая кислота и валериановый альдегид;

2.18.ванилин и ветиверилацетат;

2.19.ветиверовый спирт и ветинилацетат;

2.20.ветинон и винилаллиловый эфир;

2.21.винилацетат и винилбутират;

2.22.винилизобутиловый эфир и винилизооктиловый эфир;

2.23.винилизопропиловый эфир и винилкротонат;

2.24.винилметилкетон и винилоксиэтилметакрилат;

2.25.винилоктадециловый эфир и винилпропионат;

2.26.винилтриметилнониловый эфир и винилэтиловый эфир;

2.27.винилэтиловый эфир и винная кислота;

2.28.витамин А (ацетат) и витамин С;

2.29.галловая кислота и гексаналь;

2.30.гексановая кислота и гексилацетат;

2.31.гексилбутират и гексилдиэтилгексагидрофталат;

2.32.гексилметакрилат и гексилметилкетон;

2.33.гексиловый спирт и гексилпропионат;

2.34.гексилформиат и гексилцеллозольв;

2.35.гелиотропин и гептадециловый спирт;

2.36.гептаналь и гептилацетат;

2.37.гептилбутират и гептилдифенилкетон;

2.38.гептилизобутилкетон и гептилметилкетон;

2.39.гептиловый спирт и гептилпропионат;

2.40.гептилформиат и гидрохинон.


источники:

http://helpiks.org/3-94961.html

http://lektsia.com/1x2c30.html