Составить уравнения плоскостей делящих пополам двугранные углы

Задача 2616 Составьте уравнения плоскостей делящих.

Условие

Составьте уравнения плоскостей делящих пополам двугранные углы, образованные плоскостями x-2y+2z+6=0 и 4x+2y-4z+5=0

Решение

Ответ: В решение

Как получилось 2х-4у+2z+12? Вы х и число 6 умножили на 2?)

Жутко извиняюсь за неразборчивый почерк. Там 2x — 4y + 4z + 12. Мы всю левую часть умножили на 2.

«..Мы всю левую часть умножили на 2.» для чего, почему и всегда ли так нужно делать?

Если я вам скину пример похожий на этот сможете решить, я пытаюсь, пытаюсь с ответом ни как не сходится:( пожалуйста. Напишите уравнение плоскости, делящий пополам тупой двугранный угол, образованный плоскостями 6х-у+7z-3=0 и 2х+9у-z+7=0

Добавьте этот пример в Помогите решить на главной странице, вам помогут

а что если не будет в уровнение У?как найти этот У?

Скорее всего у вас другая задача, вам лучше обратится в ПОМОГИТЕ РЕШИТЬ на главной странице

Составить уравнения плоскостей делящих пополам двугранные углы

УСЛОВИЕ:

Составьте уравнения плоскостей делящих пополам двугранные углы, образованные плоскостями x-2y+2z+6=0 и 4x+2y-4z+5=0

РЕШЕНИЕ:

ОТВЕТ:

Добавил slava191 , просмотры: ☺ 11785 ⌚ 05.01.2015. математика 1k класс

Решения пользователей

РЕШЕНИЕ ОТ vk54215494

«..Мы всю левую часть умножили на 2.»
для чего, почему и всегда ли так нужно делать?

Написать комментарий

Делим обе части равенства на π

и умножаем на 4

+pi k, k in Z
Можно правую часть записать в виде двух ответов:

x=1+8n in Z : это . [b] -15; -7; 1; 9; 17; ..[/b].

x=3+ 8n, n in Z : это[b] -13; -5; 3; 11; . [/b]

[b]x=-5 – наибольшее отрицательное [/b]

О т в е т. x=1+8n in Z или x=3+ 8n, n in Z

корни чередуются так:

. -15;-13;-7;-5; 1;3; 9;11; 17; 19; .

[b]x=-5 – наибольшее отрицательное [/b] (прикреплено изображение)

a=1 – старший коэффициент
b=1 – средний коэффициент
с=-2 – свободный член

4.
x^2=a-5
При a-5=0 ⇒ при а=5
уравнение имеет один корень х=0

5.
Δ Прямоугольный, так как верно равенство: b^2=a^2+c^2
5^2=3^2+4^2
25=9+16
Значит, ∠ B=90 градусов и ∠ А+ ∠ С=90 градусов.

∠ А- ∠ С=36 градусов.
∠ А+ ∠ С=90 градусов.

складываем оба равенства:

2* ∠ А=126 градусов.

По формулам приведения:

sin^2x+sinx-2=0
D=9
sinx=-2 или sinx=1

sinx=-2 уравнение не имеет корней, -1 ≤ sinx ≤ 1

sinx=1 ⇒ x=(π/2)+2πk, k ∈ Z или х=90 ° +360 ° *k, k ∈ Z

Найдем корни, принадлежащие указанному отрезку с помощью неравенства:

-286 ° ≤ 90 ° +360 ° *k ≤ 204 °

-286 °-90 ° ≤ 360 ° *k ≤ 204 ° -90 °

-376 ° ≤ 360 ° *k ≤ 114 °

Неравенство верно при k=[green]-1[/green] и k=[red]0[/red]

Значит, указанному отрезку принадлежат два корня:

x=90 ° +360 °* ([green]-1[/green])=-270 °

x=90 ° +360 °*[red]0[/red]=90 °

7. KT- средняя линия трапеции:

Cредняя линия трапеции делит высоту трапеции пополам ( см. рис)

Высоты треугольников АКО и СОК равны половине высоты трапеции

S_( Δ АКО)+S_( Δ COK)=44

S_( Δ АКО)+S_( Δ COK)=KO*(h/4) +OT*(h/4)=

О т в е т. [b]176[/b]

B=-2
[i]l[/i]=8 – количество ребер четырехугольной пирамиды

Задание: cоставить уравнение плоскости(u), делящей пополам острый двугранный угол, образованный плоскостью(p1) 3x-4y+6z-2=0 с координатной плоскостью Oyz.

Окей, вторая плоскость(p2) получается задается уравнением By+Cz=0. Произвольная точка М(x0,y0,z0) принадлежит искомой плоскости только тогда, когда d(M,p1)=d(M,p2), то есть расстояния от точки, до заданных плоскостей плоскостей одинаковые, составила уравнение: $$ frac > = frac + C^ > > $$

Ответ должен быть(дан в пособии) $$ (3-sqrt )x-4y+6z-2=0$$ что явно не получится из того уравнения, что я составила. Как можно решить данную задачу?

задан 19 Окт 19:58

Условие надо хотя бы верно записывать. Наверняка так:

Угол, образованный плоскостью $% ; (p1): 3x-4y+6z-2=0 ;$% с координатной плоскостью $%Oyz$%.

@KristinaM: вторая плоскость, то есть Oyz, задаётся уравнением x=0. Поэтому никаких B, C там нет, а будет просто |x|. Тогда после раскрытия модулей возникнут две плоскости. Одна — та, что из ответа. Другая — ей перпендикулярная. По идее, там надо распознать, какая именно из этих плоскостей подходит, то есть какие углы будет острыми. Это легко проверить при помощи рассмотрения векторов нормали к плоскостям и их скалярных произведений.

К слову сказать, By+Cz=0 есть семейство плоскостей, проходящих через ось Ox.

1 ответ

Нормали к плоскостям равной длины: $%;vec =(3; -4; 6); ; vec =(sqrt ; 0; 0),;$% угол между которыми острый. Тогда нормаль к биссекторной плоскости: $% ; vec =(3+sqrt ; -4; 6);-$% сумма нормалей.
Стало быть, уравнение: $%; (3+sqrt )x -4y+ 6z-2=0, ;$% учитывая точку $%(0; 1; 1)$%.

Для того, чтобы оценить ресурс, необходимо авторизоваться.

В учебно-методическом пособии излагаются теоретические основы аналитической геометрии в пространстве, приводятся решения большого числа задач. Пособие содержит варианты задач (с ответами) для самостоятельного решения, список формул и рекомендуемой литературы. Рекомендовано Уральским отделением Учебно-методического объединения вузов РФ в области строительного образования в качестве учебного пособия для студентов строительных специальностей направления 6533500 «Строительство» всех форм обучения. Подготовлено кафедрой высшей математики УГТУ-УПИ.

Двугранные углы и формула для их вычисления. Двугранный угол при основании четырехугольной правильной пирамиды

В геометрии для изучения фигур используют две важные характеристики: длины сторон и углы между ними. В случае пространственных фигур к этим характеристиками добавляются двугранные углы. Рассмотрим, что это такое, а также опишем методику определения этих углов на примере пирамиды.

Понятие о двугранном угле

Каждый знает, что две пересекающиеся прямые образуют некоторый угол с вершиной в точке их пересечения. Этот угол можно измерить с помощью транспортира или воспользоваться тригонометрическими функциями для его вычисления. Образованный двумя прямыми угол называется линейным.

Вам будет интересно: Географическая справка: площадь России в кв. км

Теперь представим, что в трехмерном пространстве имеется две плоскости, которые пересекаются по прямой. Они изображена на рисунке.

Двугранным углом называется угол между двумя пересекающимися плоскостями. Так же как и линейный, он измеряется в градусах или радианах. Если к какой-либо точке прямой, по которой плоскости пересекаются, восстановить два перпендикуляра, лежащих в этих плоскостях, то угол между ними будет искомым двугранным. Определить этот угол проще всего, если воспользоваться уравнениями плоскостей в общем виде.

Уравнение плоскостей и формула для угла между ними

Уравнение любой плоскости в пространстве в общем виде записывается так:

A × x + B × y + C × z + D = 0.

Здесь x, y, z — это координаты точек, принадлежащих плоскости, коэффициенты A, B, C, D — некоторые известные числа. Удобство этого равенства для вычисления двугранных углов заключается в том, что оно в явном виде содержит координаты направляющего вектора плоскости. Будем обозначать его n¯. Тогда:

Вектор n¯ перпендикулярен плоскости. Угол между двумя плоскостями равен углу между их направляющими векторами n1¯ и n2¯. Из математики известно, что угол, образованный двумя векторами, однозначно определяется из их скалярного произведения. Это позволяет записать формулу для вычисления двугранного угла между двумя плоскостями:

φ = arccos (|(n1¯ × n2¯)| / (|n1¯| × |n2¯|)).

Если подставить координаты векторов, то формула запишется в явном виде:

φ = arccos (|A1 × A2 + B1 × B2 + C1 × C2| / (√(A12 + B12 + C12) × √(A22 + B22 + C22))).

Знак модуля в числителе используется, чтобы определить только острый угол, поскольку двугранный угол всегда меньше или равен 90o.

Пирамида и ее углы

Пирамидой называют фигуру, которая образована одним n-угольником и n треугольниками. Здесь n — целое число, равное количеству сторон многоугольника, который является основанием пирамиды. Данная пространственная фигура является многогранником или полиэдром, поскольку она состоит из плоских граней (сторон).

Двугранные углы многогранника-пирамиды могут быть двух типов:

  • между основанием и боковой стороной (треугольником);
  • между двумя боковыми сторонами.

Если рассматривается пирамида правильная, то названные углы для нее определить несложно. Для этого по координатам трех известных точек следует составить уравнение плоскостей, а затем воспользоваться приведенной в пункте выше формулой для угла φ.

Ниже приведем пример, в котором покажем, как найти двугранные углы при основании пирамиды четырехугольной правильной.

Четырехугольная правильная пирамида и угол при ее основании

Предположим, что дана правильная пирамида с квадратным основанием. Длина стороны квадрата равна a, высота фигура составляет h. Найдем угол между основанием пирамиды и ее боковой стороной.

Поместим начало координатной системы в центр квадрата. Тогда координаты точек A, B, C, D, показанных на рисунке, будут равны:

Рассмотрим плоскости ACB и ADB. Очевидно, что направляющий вектор n1¯ для плоскости ACB будет равен:

Для определения направляющего вектора n2¯ плоскости ADB поступим следующим образом: найдем произвольные два вектора, которые ей принадлежат, например, AD¯ и AB¯, затем, вычислим их векторное произведение. Его результат даст координаты n2¯. Имеем:

AD¯ = D — A = (0; 0; h) — (a/2; -a/2; 0) = (-a/2; a/2; h);

AB¯ = B — A = (a/2; a/2; 0) — (a/2; -a/2; 0) = (0; a; 0);

n2¯ = [AD¯ × AB¯] = [(-a/2; a/2; h) × (0; a; 0)] = (-a × h; 0; -a2/2).

Поскольку умножение и деление вектора на число не изменяет его направления, то преобразуем полученный n2¯, разделив его координаты на -a, получим:

Мы определили направляющие вектора n1¯ и n2¯ для плоскостей основания ACB и боковой стороны ADB. Остается воспользоваться формулой для угла φ:

φ = arccos (|(n1¯ × n2¯)| / (|n1¯| × |n2¯|)) = arccos (a / (2 × √h2 + a2/4)).

Преобразуем полученное выражение и перезапишем его так:

φ = arccos (a / √(a2 + 4 × h2)).

Мы получили формулу для двугранного угла при основании для правильной четырехугольной пирамиды. Зная высоту фигуры и длину ее стороны, можно рассчитать угол φ. Например, для пирамиды Хеопса, сторона основания которой составляет 230,4 метра, а начальная высота равнялась 146,5 метра, угол φ будет равен 51,8o.

Определить двугранный угол для четырехугольной правильной пирамиды также можно с помощью геометрического метода. Для этого достаточно рассмотреть прямоугольный треугольник, образованный высотой h, половиной длины основания a/2 и апофемой равнобедренного треугольника.


источники:

http://4apple.org/sostavit-uravnenija-ploskostej-deljashhih-popolam/

http://1ku.ru/obrazovanie/43035-dvugrannye-ugly-i-formula-dlja-ih-vychislenija-dvugrannyj-ugol-pri-osnovanii-chetyrehugolnoj-pravilnoj-piramidy/