Составить уравнения реакций cus o2

Закончите схемы реакций: а) H2S + O2 → … ; б) CuS + O2 → … ;

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,300
  • гуманитарные 33,630
  • юридические 17,900
  • школьный раздел 607,261
  • разное 16,836

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Cus o2 изб

Взаимодействует с металлами

Al + O2 t→ Al2O3 оксидная пленка

3) Взаимодействует со щелочными металлами (кроме Li)с образованием пероксидов и надпероксидов

Na + O2 → пероксид натрия

Na + O2 → надпероксид натрия

Na2O2 + O2 P, t→ NaO2

K + O2 → озонид калия

II. Взаимодействие со сложными веществами –окисляет очень многие вещества. Часто в зависимости от избытка-недостатка кислорода или присутствия катализаторов могут быть получены различные продукты:

H2S + O2 (недост.) → S + H2O

H2S + O2 (изб.) → SO2+ H2O

NH3+ O2 Pt→ NO + H2O

NH3 + O2 → N2 + H2O

CuS + O2 → CuO + SO2

CH4 + O2 → CO2 + H2O органические соединения сгорают в кислороде до CO2 и H2O

Окисляет некоторые соли в растворе:

Na2SO3 + O2 → Na2SO4

Вместо кислорода в большинстве реакций можно использовать воздух, однако интенсивность реакции будет меньше

ПОЛУЧЕНИЕ КИСЛОРОДА

В лаборатории

Электролизом водных растворов щелочей

NaOH →←

При термическом или каталитическом разложении кислородсодержащих соединений

KMnO4 t→ K2MnO4 + MnO2 + O2

H2O2 MnO2→ H2O + O2

KClO3 MnO2→ KCl + O2

KNO3 t→ KNO2 + O2

K2Cr2O7 t→ K2CrO4 + Cr2O3 + O2

HgO t→ Hg + O2 так кислород был получен впервые

3) Взаимодействием пероксидов и надпероксидов щелочных металлов с углекислым газом(эта реакция используется для регенерации воздуха на подводных лодках и космических станциях)

KO2 + CO2 → K2CO3 + O2

В промышленности

Перегонкой жидкого воздуха

tкип (воздуха) = -190 °С

tкип(О2) = -183 °С – уже жидкий

tкип(N2)= -195,8 °С – все еще газообразный

При температуре -190 °С азот испаряется, а кислород остается. Полученный таким образом кислород содержит 2-3 % N2 и Ar

Особо чистый кислород получают электролизом растворов щелочей или электролизом воды

Химия меди и ее соединений

В природе медь находится в основном в виде соединений: халькозина Cu2S, ковелина CuS, куприта Cu2O, малахита (CuOH)2CO3 и других соединений, но встречается и в самородном состоянии.

CuS+O2 сложить химическую реакцию

Получение обычно складывается из нескольких этапов: обжига сульфидов, восстановления полученных оксидов углем и рафинирования меди:

2CuS + 3O2 ® 2SO2 + 2CuO

CuO + СО ® Cu + СО2

Медь — мягкий красный металл, хорошо проводит тепло и электрический ток. Медь образует сплавы: латунь (60-90% Cu и 10-40% Zn), бронзы (например, 80% Cu, 15%Sn, 5% Zn), мельхиор (80% Cu, 20% Ni) и другие сплавы.

Медь расположена в ряду напряжений после водорода и не реагирует с обычными кислотами в отсутствии окислителей:

Однако медь реагирует с кислотами окислителями:

Cu + 2H2SO4 (конц.) ® CuSO4 + SO2 + 2H2O

Cu + 4HNO3 (конц.) ® Cu(NO3)2 + 2NO2 + 2H2O

3Cu + 8HNO3 (разб.) ® 3Cu(NO3)2 + 2NO + 4H2O

Красный оксид меди(I) Cu2O образуется при нагревании до 200оС меди на воздухе при недостатке кислорода.

Соответствующий оксид CuOH нестоек, распадаясь на оксид и воду, и легко окисляется до Cu(OH)2. Из соединений меди(I) устойчивы лишь комплексные соединения, например, [Cu(NH3)2]OH или H[Cu(CN)2], или малорастворимые вещества, например белый CuI.

Черный оксид меди(II) CuO получается при нагревании меди на воздухе выше 300оС при избытке кислорода.

При нагревании выше 1000оС CuO распадается на Cu2O и кислород.

Голубой осадок гидроксида меди(II) Cu(OН)2 получают действием щелочей на соли меди(II):

CuSO4 + 2NaOH ® Cu(OН)2¯ + Na2SO4

При нагревании этот осадок чернеет вследствие образования черного оксида меди(II):

Cu(OН)2¯ СuO + H2O

Гидроксид меди(II) Cu(OН)2 имеет амфотерные свойства с преобладанием основных свойств.

Кислотные свойства Cu(OН)2 не наблюдаются в растворах, но проявляются при сплавлении или действии концентрированных щелочей:

Cu(OН)2¯ + Н2SO4 ® CuSO4 + 2H2O

Cu(OН)2¯ + NaOH ¹ не идет в растворе

Cu(OН)2¯ + 2NaOH (конц.) ® Na2[Cu(OH)4]

Ионы меди(II) образуют комплексные соединения.

Так, образование интенсивно-синего тетраммина меди(II) используется для обнаружения ионов меди(II) в растворе:

CuSO4 + 4NH4OH ® [Cu(NH3)4]SO4 + 4H2O

Соли меди(II) имеют вследствие гидролиза кислую среду:

2CuSO4 + 2H2O (CuOH)2SO4 + H2SO4

Cu2+ + SO42- + H2O CuOH+ + H+ + SO42-

Cu2+ + H2O CuOH+ + H+ (pH Гидроксосоли (основные соли)

Гидроксосоли представляют собой продукт неполного замещения гидроксид-ионов основания кислотными остатками.В составе сложного катиона основной соли присутствуют один или несколько гидроксид-ионов:

Al(OH)Cl2 Û AlOH2+ + 2Cl-

Al(OH)2Cl Û Al(OH)2+ + Cl-

По международной систематической номенклатуре названия основных солей имеют, например,следующий вид:

Zn(OH)Cl- цинк гидроксид хлорид

Al(OH)2NO3 – алюминий дигидроксид триоксонитрат (V)

Полусистематическая (международная) номенклатура использует для основных солей термин «гидроксосоли», при этом соответствующие количественные приставки в названиях гидроксосолей указывают количество гидроксид-ионов в формуле соли.

На первом месте в названии соли указывается анион кислотного остатка, приставка «гидроксо» пишется далее слитно с названием соответствующего катиона, например:

Mg(OH)Cl — хлорид гидроксомагния (допускается запись без круглых скобок: MgOHCl)

[(Al(OH)2]2SO4 – сульфат дигидроксоалюминия

Al(OH)SO4 сульфат гидроксоалюминия

В русской номенклатуре названия основных солей образовывали от средних солей с прибавлением слова «основной».

Для трех- и четырехкислотных оснований указывали число замещенных гидроксид-ионов, например,

(ZnOH)2SO4 – основной сернокислый цинк

FeOHCl- основное хлористое железо

[Al(OH)2]3PO4- основной однозамещенный ортофосфорнокислый алюминий [Al(OH)]3(PO4)2- основной двузамещенный ортофосфорнокислый алюминий

Большое затруднение, обычно, возникает, как и для гидросолей, при составлении формул и названий гидроксосолей, поэтому рассмотрим этот вопрос более подробно.

Формулы и названия гидроксосолей по

Полусистематической (международной) номенклатуре

Также как в случае гидросолей, в названии гидроксосоли отражен ее состав, при этом необходимо помнить:

однокислотные основания, содержащие одну ОН- — группу (NaOH, KOH, NH4OH и т.д.) не образуют гидроксосолей, т.к. в их растворах существует один вид катионов, например:

гидроксид-ионы всегда входят в состав катиона соли ( CuOH+, Al(OH)2+ и т.д.). Именно поэтому приставка «гидроксо» ставится после названия аниона.

Составим формулы гидроксосолей по их названиям:

сульфат гидроксомеди (II ), состав соли:

CuOH+ — катион соли (его суммарный заряд

определяют по заряду катиона металла и гидроксид-иона или сумме зарядов OH- , если их несколько ).

Формула соли имеет вид: (CuOH)2SO4.

Приставка «гидроксо» указывает на присутствие в составе катиона соли одной -ОН группы, «дигидроксо» – двух -ОН групп (в растворе после диссоциации – гидроксид-ионов ОН-) .

При этом напоминаем еще раз, что в первую очередь называют кислотный остаток в составе соли, а потом катион (это правило продемонстрировано в названиях средних и гидросолей ). Приведем еще два примера:

Нитрат гидроксоалюминия

AlOH2+- катион соли, формула – AlOH(NO3)2

Сульфитдигидроксоалюминия

Al(OH)2+ — катион соли (его суммарный заряд [(3+)+2(1-)=1+])

Формула соли: (Al(OH)2)2SO3.

Теперь давайте назовем соль по ее формуле:

(FeOH)3PO4

­- стехиометрический коэффициент, стоящий за скобками и указывающий количество катионов, не будет входить в название соли: FeOH+ — катион гидроксожелеза (II).

Название соли:ортофосфат гидроксожелеза (II).

(Fe(OH)2)2SO4 — кислотный остаток– SO42- — сульфат-ион, Fe(OH)2+ — катион дигидроксожелеза (III), название соли —сульфат дигидроксожелеза (III).

Получают гидроксосоли выше перечисленными способами.

Наиболее часто встречаются следующие:

1. кислота (или кислотный оксид) + основание (основной оксид),

(избыток по сравнению с получением нормальной соли – см. число молей основания (м) на 1 моль кислоты).

Fe(OH)2 + 2HCl = FeCl2 + H2O

0.5 м 1 м хлорид железа(II)

Fe(OH)2 + HCl = Fe(OH)Cl + H2O

хлорид гидроксожелеза (II)

избыток основания ( по сравнению с предыдущей реакцией ).

взаимодействие средней соли с основанием:

FeSO4 + Fe(OH)2 = (FeOH)2SO4¯

Как правило, гидроксосоли соли растворимы хуже средних солей.

Так же, как гидросоли, они часто встречаются в природе в составе различных пород. Образование осадков карбонатов, хлоридов и сульфатов гидроксомеди (II) наблюдается в городах на поверхности бронзовых памятников (бронза содержит медь) при протекании ряда реакций с компонентами окружающей среды (O2, H2О, HCl, H2СО3, H2SO4 ):

2Cu + O2 + 2H2O = 2 Cu(OH)2¯

2Cu + O2 + 2H2SO4 = 2CuSO4 + 2H2O

Cu(OH)2 ¯ + CuSO4 = (CuOH)2SO4¯ — зелено-голубой осадок на бронзе (патина).

Гидроксосоли можно перевести в средние при добавлении кислот (рекомендуется добавлять сильную кислоту).

При этом происходит реакция нейтрализации:

Fe(OH)Cl ¯ + HCl = FeCl2 + H2O

2Fe(OH)Cl ¯ + H2SO4 = FeCl2 + FeSO4 + 2H2O

Чтобы определить, какие гидроксосоли может образовать данное основание, необходимо рассмотреть его ступенчатую диссоциацию (основание может последовательно отщеплять гидроксид-ионы).

Это позволяет определить вид и заряд всех возможных катионов в растворе данного основания:

Са(ОН)2 ↔ ОН- + СаОН+ — 1 ступень – катион гидроксокальция

СаOH+ ↔ OH- + Са2+— 2 ступень – катион кальция

При взаимодействии такого основания с кислотой, например HCl, могут образоваться следующие соли: Ca(OH)Clи CaCl2.

Определив виды солей, можно записать уравнения реакций их образования при различном соотношении основания и кислоты:

Ca(OH)2 + HCl = Ca(OH)Cl + H2O хлорид гидроксокальция

Ca(OH)2 + 2 HCl = CaCl2 + H2O хлорид кальция

Рассмотрим еще один пример:

Примечание: для определения заряда сложного катиона соли рекомендуем указать заряд гидроксид-иона и катиона металла в формуле основания (например, Al3+ и OH- ).

Как правило, при единичных заряда цифра 1 может не ставиться.

Эта схема позволяет написать следующие формулы солей:

Al(OH)2NO3 — нитрат дигидроксоалюминия

AlOH(NO3)2 — нитрат гидроксоалюминия

Al(NO3)3 — нитрат алюминия

Очень часто встречаются более сложные случаи взаимодействия оснований и кислот, а именно, многоосновной кислоты и многокислотного основания.

В таком случае образуется несколько видов солей (нормальная, одна или несколько гидро- и гидроксосолей).

CuS+O2=CuO+So2 помогите расписать овр

Рассмотрим пример, используя как вспомогательное действие ступенчатую диссоциацию кислоты и основания:

Эта схема позволяет записать формулы трех солей:

BeSO4 – сульфат бериллия Be(HSO4)2 — гидросульфат бериллия и (BeOH)2SO4 — сульфат гидроксобериллия.

Примечание: не бывает солей, в которых присутствуют одновременно ион Н+ и ОН-, т.к.

они взаимодействуют с образованием Н2О.

Определив возможные соли, можно записать уравнения реакций их образования:

Be(OH)2 + H2SO4 = BeSO4 + H2O

Be(OH)2 + 2 H2SO4 = Be(HSO4)2 + 2H2O

2Be(OH)2 + H2SO4 = (BeOH)2SO4 + H2O

Рассмотрим еще один пример:

Запишем формулы возможных солей:

Fe2(SO4)3 – сульфат железа (III); Fe(HSO4)3 – гидросульфат железа (III);

(Fe(OH)2)2SO4 – сульфат дигидроксожелеза (III); Fe(OH)SO4–сульфат гидроксо железа (III).

Предложенная схема позволяет проанализировать, какие соли могут образоваться при взаимодействии основания с кислотой при их различном соотношении.

Напомним, что гидросоли (кислые соли) и гидроксосоли (основные соли) образуются также при гидролизе средних (нормальных) солей.

Примечание. При написании названий солей вы можете использовать любую разновидность химической номенклатуры, по наиболее узнаваемой и понятной для вас же будет полусистематическая (международная) номенклатура, которую мы и рекомендуем в качестве основной.

Вернемся теперь к нашему заданию (п.

2). По полусистематической (международной) номенклатуре названия солей будут такими:

Al2S3 – сульфид алюминия, либо сульфид Al (нормальная или средняя соль);

Al(HS)3 – гидросульфид алюминия, либо гидросульфид Al (гидросоль или кислая соль);

Al(OH)S – сульфид гидроксоалюминия, либо сульфид гидроксо Al (гидроксосоль или основная соль (двузамещенная));

[Al(OH)2]2S – сульфид дигидроксоалюминия, либо сульфид дигидроксо Al (гидроксоль или основная соль (однозамещенная)).

Примечание: в названиях солей приставка «гидро» пишется слитно с названием аниона (кислотного остатка), в названиях основных солей приставка «гидроксо» пишется слитно с названием катиона и после названия аниона.

В названиях солей катион (в нашем случае – Al(Al3+)), может быть записан либо полным названием, либо химическим символом (см. периодическую таблицу).

Теперь по п.3 задания I части.

Для выполнения данного задания вам рекомендуется прочитать из уже упоминавшегося «Опорного конспекта лекций по химии» раздел: «Строение атома. Периодический закон и периодическая система химических элементов Д.И. Менделеева», стр. 34-58.

Электронная формула атома

Электронная формула или электронный паспорт – это формула записи распределения электронов в атомах по энергетическим уровням и подуровням.

Количество электронов в атоме равно его порядковому номеру в периодической системе.

В нашем случае у Al должно быть 13 электронов, т.к. его номер 13. Электронная формула запишется так: 1s22s22p63s23p1. Запись начинается с низшего (первого) энергетического уровня. Далее следует буквенная запись энергетического подуровня, определяющего форму электрона (электронного облака). Число электронов на подуровне указывается цифрой справа у буквенного обозначения подуровня.

Таким образом, из приведенной выше электронной формулы следует, что у атома алюминия на первом энергетическом уровне находится два s-электрона, на втором – восемь электронов, из них два s-электрона и шесть p-электронов, на третьем – три электрона, из них два s-электрона и один p-электрон.

Графическая электронная формулы для алюминия будет выглядеть следующим образом:

Последняя запись наглядно характеризует энергетическое состояние электронов в атоме (энергетическую диаграмму атома алюминия).

Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения: Cu 1 Cu

5.7. Оксид и гидроксид меди (I)

Оксид меди (I) Cu2O – красновато-коричневые кристаллы с кубической кристаллической решеткой, в которых реализуется линейно-тетраэдрическая координация атомов, плотность 6,1 г/см3, температура плавления 1242°С.

В воде не растворяется и не реагирует с ней. Имеет слабовыраженные амфотерные свойства с преобладанием основных.

Взаимодействует с растворами щелочей с образованием гидроксокомплексов:

Cu2O + 2NaOH + H2O = 2Na[Cu(OH)2].

В водных растворах аммиака образует гидроксид диамминмеди (I):

Cu2O + 4NH3 + H2O = 2[Cu(NH3)2]OH.

С соляной кислотой взаимодействует с образованием дихлорокупрата (I) водорода:

Cu2O + 4HCl = 2H[CuCl2] + H2O.

С бромоводородом и йодоводородом образует соли меди (I):

Cu2O + 2HBr = 2CuBr + H2O;

Cu2O + 2HI = 2CuI + H2O.

В разбавленной серной кислоте диспропорционирует, образуя сульфат меди (II) и металлическую медь:

Cu2O + H2SO4 = Cu + CuSO4 + H2O.

Восстанавливается водородом, угарным газом и активными металлами до металлической меди:

Cu2O + H2 = 2Cu + H2O;

Cu2O + CO = 2Cu + CO2;

Cu2O + Mg = 2Cu + MgO.

При нагревании окисляется кислородом воздуха:

Оксид меди (I) получают электролизом раствора хлорида натрия с использованием медных электродов.

На катоде выделяется водород, а на аноде растворяется медь с образованием ионов Cu+, при взаимодействии с группами ОН- образуется Cu2O.

Оксид меди (I) образуется при нагревании до 1100°С оксида меди (II):

или при восстановлении сульфата меди глюкозой или гидразином в щелочной среде:

2CuSO4 + C6H12O6 + 4NaOH = Cu2O + C6H12O7 + 2Na2SO4 + 2H2O.

Гидроксид меди (I) CuOH как индивидуальное соединение не выделен.

При взаимодействии солей меди (I) с щелочами в растворе образуется гидратированный оксид Cu2O · nH2O, из раствора выделяется только Cu2O.

При растворении Cu2O в растворах щелочей образуется M[Cu(OH)2].

CuS + O2 = CuO + So2 помогите расписать овр?

Химия | 5 — 9 классы

CuS + O2 = CuO + So2 помогите расписать овр.

Сu2S + 2O2 = 2CuO + So2

S( — 4) — 8e — — — — S( + 4) 8 / 1вос — ль, ок — ся 8

O2(0) + 4e — — — — 2O( — 2)4 / 2 ок — ль, в — ся.

P + O2 = P2O5 расписать ОВР?

P + O2 = P2O5 расписать ОВР.

Cu + cus + H2S + so2 + Naso4 рассмотреть с овр?

Cu + cus + H2S + so2 + Naso4 рассмотреть с овр.

Cu → CuS → Cuo → CuSO₄ → Cu(OH)₂ → CuO — заранее спасибо?

Cu → CuS → Cuo → CuSO₄ → Cu(OH)₂ → CuO — заранее спасибо.

Cu — CuS — CuO — CuSO4 — Cu(OH)2 — CuO?

Cu — CuS — CuO — CuSO4 — Cu(OH)2 — CuO.

Закончите уравнение реакций CuS + O2 — &gt ; CuO + ?

Закончите уравнение реакций CuS + O2 — &gt ; CuO + ?

CuS + O2 = Cu + SO2 или CuO + SO2?

CuS + O2 = Cu + SO2 или CuO + SO2?

Помогите решить?

Cu — Cus — CuO — CuSO4 — Cu — CuCl2 — Cu3 (PO4)2.

Составьте уравнение реакции CuS + O2 — CuO = SO( еще реакции)?

Составьте уравнение реакции CuS + O2 — CuO = SO( еще реакции).

Одинаковая относительная молярная масса у веществ :1)СuSo4 и CuS2)CuS и CuO3)CuO и Cu2S4)CuSO4 и Cu2S5)CuO и SO3(дайте пожалуйста развернутый ответ)?

Одинаковая относительная молярная масса у веществ :

(дайте пожалуйста развернутый ответ).

Помогите срочно 8 кл ХИМИЯ CuS + O2 — >CuO + ?

Помогите срочно 8 кл ХИМИЯ CuS + O2 — >CuO + ?

Если вам необходимо получить ответ на вопрос CuS + O2 = CuO + So2 помогите расписать овр?, относящийся к уровню подготовки учащихся 5 — 9 классов, вы открыли нужную страницу. В категории Химия вы также найдете ответы на похожие вопросы по интересующей теме, с помощью автоматического «умного» поиска. Если после ознакомления со всеми вариантами ответа у вас остались сомнения, или полученная информация не полностью освещает тематику, создайте свой вопрос с помощью кнопки, которая находится вверху страницы, или обсудите вопрос с посетителями этой страницы.

1) NaOH + H2 2) ZnS 3) ZnO 4) ZnCl2 + H2 5) ZnCl2 + Fe 6) Mg(OH)2 + H2 7) Mg3P2 8) — 9) MgCl2 10) — 11) MgSO4 + Ni 12) AlBr3 13) Al2(SO4)3 + Fe 14) AlI3 + H2.

FeO + P = Fe + P2O5 1)восстановитель Fe (в степени — 2) – 2е = Fe (в нулевой степени) 2)окислитель Р (в нулевой степени) + 5е = P (в степени + 5).

Химия используется при уборке в доме , мытьё посуды . В сельской хозяйственности для орошения полей от вредителей . В медецине для создания лекарств .

Ba — металлическая BaBr2 — ионная HBr — ковалентная полярная Br2 — ковалентная не полярная.

Ba — металлическая HBr — Ковалентная полярная Br2 — ковалентная не полярная BaBr2 — ионная.

Ми знаємо формулу знаходження масової частки елемента в речовині і у цю формулу підставляємо значення, знаходимо скількі атомів Оксигена у формулі .

В этих местах останутся желтые пятна, а потом они станут оранжевые.

2Al(OH)3 = Al2O3 + 3H2O H2CO3 = CO2 + H2O CACO3 = CAO + CO2( газ) CU(OH)2 = CUO + H2O Zn + 2HCl = ZnCl2 + H°2(газ) Ca° + H2SO4 = CaSO4 + H°2(газ) 3Mg° + 2H3PO4 = Mg3(PO4)2 + H°2(газ) 2Al° + Fe2O3 = Al2O3 + 2Fe° Cu(No3) + NaOH = Cu(OH) (осадок) + NaNo..

2Al(OH)3 — — >Al2O3 + 3H2O H2CO3 — — >CO2 + H2O CaCO3 — — >CaO + CO2 Cu(OH)2 — — >CuO + H2O Zn + 2HCL — — >ZnCL2 + H2 Ca + H2SO4 — — >CaSO4 + H2 3Mg + 2H3PO4 — — >Mg3(PO4)2 + 3H2 2Al + Fe2O3 — — >2Fe + Al2O3 Cu(NO3)2 + 2NaOH — — >Cu(OH)2 + 2NaNO3 HNO..

Вещества : вода, медь Тела : льдина , ваза, труба, гвоздь, сосулька.


источники:

http://cyberlesson.ru/cus-o2-izb/

http://himia.my-dict.ru/q/4311194_cus-o2-cuo-so2-pomogite-raspisat/