Составить уравнения реакций kmno4 и na2so3

Используя метод электронного баланса, составьте уравнение реакции: KMnO4 + Na2SO3+ H2SO4 → MnSO4 + Na2SO4 + K2SO4 + H2O

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,297
  • гуманитарные 33,622
  • юридические 17,900
  • школьный раздел 607,223
  • разное 16,830

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Задача 1. Составьте уравнение окислительно-восстановительной реакции между перманганатом калия и сульфитом натрия в среде серной кислоты.

Решение. KMnO4 и Na2SO3 – сильные электролиты, поэтому в растворе они практически полностью диссоциируют на ионы. Окисляющим началом является анион MnO4 , в котором марганец находится в степени окисления +7. В то же время у серы в сульфит-анионе имеется ресурс окисления до сульфат-аниона, поэтому он является восстановителем. Известно, что в кислой среде перманганат-анион восстанавливается до Mn 2+ . Поэтому уравнения полуреакций записываются в виде:

2MnO4 – + 8Н + + 5е Mn 2+ + 4 Н2Овосстановление, окислитель KMnO4
53 2– + Н2О – 2е 4 2– + 2Н +окисление, восстановитель Na2SO3

2MnO4 – + 16Н + + 5SО3 2– +5Н2О 2Mn 2+ + 8 Н2О + 5SО4 2– + 10Н +

Можно видеть, как пара Н + – Н2О осуществляет перераспределение кислорода между реагентами и продуктами реакции.

Коэффициенты перед строками уравнений полуреакций отражают требования электронного баланса: количество электронов, принятых окислителем должно быть равно количеству электронов, отданных восстановителем. Суммирование левых и правых частей уравнений реакций с учетом умножения их на указанные коэффициенты дает уравнение окислительно-восстановительной реакции в ионно-молекулярной форме, приведенное под чертой. Сокращение подобных членов в этом уравнении приводит к более компактной его форме

Переход к молекулярной форме приводит к окончательному виду уравнения: .

Пример 3. Составление уравнений окислительно-восстановительных реакций, протекающих в нейтральной среде.

Задача 1. Составьте уравнение окислительно-восстановительной реакции между сульфатом марганца(II) и перманганатом калия.

Решение. Продуктомэтой реакции является MnO2, следовательно, в роли окислителя выступает анион , а восстановителя – . Составляем уравнение полуреакции, учитывая, что в левой части этих уравнений в качестве перераспределителя кислорода выступает вода.

2MnO4 – + 2Н2О + 3е MnО2 + 4ОН –восстановление, окислитель MnO4
3Mn 2+ + 2Н2О – 2е MnО2 + 4Н +окисление, восстановитель Mn 2+

2MnO4 – + 10Н2О + 3Mn 2+ 5MnО2 + 8ОН – + 12Н + .

Суммирование левых и правых частей уравнений полуреакций с учетом умножения их строк на приведенные коэффициенты дает ионно-молекулярное уравнение, представленное под чертой. С учетом того, что рекомбинация 8Н + и 8ОН – в правой части этого уравнения дает 8 молекул воды, сокращаем воду в левой и правой частях и получаем уравнение

2MnO4 – + 2Н2О + 3Mn 2+ 5MnО2 + 4Н + .

Переход к молекулярной форме приводит к окончательному виду уравнения:

.

Пример 4. Составление уравнений окислительно-восстановительных реакций с участием органических соединений.

Задача 1. Составьте уравнение реакции окисления этилбензола перманганатом калия в нейтральной среде.

Решение. Роль окислителя в этой реакции выполняет перманганат-анион, а восстановителя – этилбензол, . В нейтральной среде перманганат-анион переходит в , а этилбензол деструктивно окисляется до бензойной кислоты и углекислого газа. В этой связи уравнение полуреакций записывается в виде

4MnO4 – + 2Н2О + 3е MnО2 + 4ОН –восстановление, окислитель MnO4
1 + 4Н2О – 12е + + 12Н +окисление, восстановитель

4MnO4 – + 12Н2О + 4MnО2 + + + + 12 Н2О + 4ОН –

Сокращая воду в левой и правой частях полученного уравнения и учитывая взаимодействия

+ ОН – + Н2О

+ 2ОН – + Н2О,

приходим к уравнению

4MnO4 – + 4MnО2 + + +2Н2О+ ОН —

Переходим к молекулярной форме уравнения:

4КМnO4 + 4MnО2 + + +2Н2О+ + КОН.

Пример 5.Определение окислительно-восстановительных молярных масс эквивалентов.

Задача 1. Чему равен эквивалент окислителя в реакции ?

Решение. Молярная масса эквивалента окислителя (восстановителя) равна его молярной массе, деленной на число принятых (или отданных) электронов. В приведенной реакции окислителем является r=158, М=158г/моль), а процесс восстановления идет по схеме .

Следовательно, молярная масса эквивалента окислителя равна

(г/моль).

Пример 6.Определение направления окислительно-восстановитель­ной реакции по величине окислительно-восстановительных потенциалов (Red-Ox-потенциалов).

Задача 1. Возможно ли в качестве окислителя в кислой среде использовать в следующих процессах при стандартных условиях:

а) ;

б) ;

в)

г) .

Стандартный окислительно-восстановительный потенциал системы

.

Решение. Для определения направления окислительно-восстановительной реакции необходимо определить ЭДС ( E, ):

,

где – потенциал окислителя; – потенциал восстановителя.

Реакция возможна, если E ( ) >0.

Для выяснения возможности протекания окислительно-восстановитель­ных реакций определяем ЭДС следующих систем:

а)

E=1,33-2,85= -1,52В;

б)

E =1,33-1,36= -0,03В;

в)

E =1,33-1,06= +0,27В;

г)

E =1,33-0,54= +0,79В.

Таким образом, дихромат калия может быть использован в качестве окислителя только для процессов:

.

Пример 7. Определение возможности протекания окислительно-восстановительной реакции по величине изменения энергии Гиббса (изобарно-изотермического потенциала).

Задача 1.Определите возможность протекания окислительно-восстановительной реакции

,

если стандартные значения энергии Гиббса равны:

; ;

; .

Решение.Определяем процесса

;

= + – 3 =

=2(-79,91) + 86,69 – 3(51,84) – (-237,5)=8,65кДж.

Так как > 0, то протекание данной реакции возможно только в обратном направлении, т.е. справа налево.

1.8. ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ

Электрохимическими процессами называют процессы взаимного превращения химической и электрической форм энергии.

Электрохимические процессы можно разделить на две основные группы:

1)процессы превращения химической энергии в электрическую (в гальванических элементах);

2) процессы превращения электрической энергии в химическую (электролиз).

Простейшая электрохимическая система состоит из двух электродов, соединенных друг с другом металлическим проводником (внешней цепи) и ионного проводника между ними (растворы или расплавы электролитов).

1.8.1. Гальванические элементы

При окислительно-восстановительных реакциях происходит переход электронов от восстановителя к окислителю. Эту реакцию можно проводить таким образом, чтобы процессы окисления и восстановления были пространственно разделены, а электроны перемещались от восстановителя к окислителю по внешней цепи.

Устройства, при помощи которых химическая энергия превращается в электрическую, называются гальваническими элементами, или химическими источниками электрической энергии.

Одним из первых гальванических элементов был сконструирован гальванический элемент Якоби-Даниэльса. Это устройство состоит из двух электродов — металлических пластин (цинковой и медной), помещённых в раствор электролитов (солей цинка и меди), разделенных пористой перегородкой, и соединённых проводником.

Электрод, на котором протекает процесс окисления, называется анодом.

Электрод, на котором протекает процесс восстановления, называется катодом.

окисление

восстановление

Используют специальную форму записи гальванического элемента, в которой указывают анод, поверхность раздела, первый электролит, электролитический ключ, второй электролит, катод и направление движения электронов во внешней цепи:

Т.о., цинковая пластина начинает растворяться, а на медной пластине начинает осаждаться медь, пока равновесие не восстановится.

Электрический ток, протекающий по внешней цепи, может совершать полезную работу, которая равна произведению количества прошедшего электричества на напряжение:

где: n – число электронов, участвующих в окислительно-восстановительном процессе;

F – число Фарадея (F = 96500 Кл/моль);

DE – электродвижущая сила гальванического элемента (ЭДС).

В то же время максимальная полезная работа равна изменению свободной энергии Гиббса реакции: Amax = — ∆G.

Работа гальванического элемента процесс самопроизвольный (∆G n+ + ne

— — — Металл — — — —+ + + + + + + + + + Раствор + + + +
Рис.1 Строение двойного электрического слоя на границе раздела металл-раствор

Металл становится заряженным отрицательно, а раствор – положительно. Положительно заряженные ионы из раствора притягиваются к отрицательно заряженной поверхности металла, в результате чего на границе металл–раствор возникает двойной электрический слой (рис.1). Между металлом и раствором возникает разность потенциалов, которая называется электродным потенциалом.

Наряду с окислением металла протекает обратная реакция – восстановления ионов металла до атомов. При некотором значении электродного потенциала, который называется равновесным электродным потенциалом, устанавливается равновесие

М + m H2O M(H2O)m n+ + ne

или без учета гидратационной воды: М M n + + ne.

Дата добавления: 2014-12-05 ; просмотров: 6896 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Составьте электронные уравнения. Расставьте коэффициенты в уравнениях реакций. KMnO4 + Na2SO3 + КОН → K2MnO4 + Na2SO4 + H2O P + HNO3 + H2O→ H3PO4+NO

Готовое решение: Заказ №8524

Тип работы: Задача

Статус: Выполнен (Зачтена преподавателем ВУЗа)

Предмет: Химия

Дата выполнения: 14.09.2020

Цена: 209 руб.

Чтобы получить решение , напишите мне в WhatsApp , оплатите, и я Вам вышлю файлы.

Кстати, если эта работа не по вашей теме или не по вашим данным , не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу , я смогу выполнить её в срок 1-3 дня!

Описание и исходные данные задания, 50% решения + фотография:

Составьте электронные уравнения. Расставьте коэффициенты в уравнениях реакций. Для каждой реакции укажите, какое вещество является окислителем, какое – восстановителем; какое вещество окисляется, какое – восстанавливается

Решение :

восстановитель P 0 – 5ē → P +5 3 окисление

окислитель N +5 + 3ē → N +2 5 восстановление

Если вам нужно решить химию, тогда нажмите ➔ помощь по химии.
Похожие готовые решения:
  • Могут ли происходить окислительно-восстановительные реакции между веществами: a) NH3 и КМnО4, б) HNO2 и HI; в) НС1 и H2Se? Почему? HCl +CrO3→ Cl2 + CrCl3 + Н2О Cd + KMnO4 +H2SO4 → CdSO4 + K2SO4 + Mn
  • Составьте электронные уравнения. I2 + NaOH → NaOI + NaI MnSO4 + PbO2 + HNO3 → HMnO4 + Pb(NO3)2 +PbSO4 +H2O
  • При смешивании растворов CuSO4 и К2СО3 выпадает осадок основной соли (СuОН)2СО3 и выделяется СО2. Составьте ионное и молекулярное уравнения происходящего гидролиза
  • Какое значение рН имеют растворы солей Bi(NO3)3, FeSO4, Na2SO3. Составьте молекулярные и ионные уравнения гидролиза

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://helpiks.org/1-30733.html

http://natalibrilenova.ru/sostavte-elektronnyie-uravneniya-rasstavte-koeffitsientyi-v-uravneniyah-reaktsij-kmno4—na2so3—kon—k2mno4—na2so4—h2o-p—hno3—h2o-h3po4no/