Составить задачу решаемую двух линейными уравнениями

Составление и решение задач с помощью линейных уравнений в 7-м классе

Разделы: Математика

Основная цель: учить составлять уравнения к задаче.

В ходе урока учащиеся смогут:

  • находить связи между данными в задаче;
  • использовать виды сравнения при составлении задач;
  • решать линейные уравнения;
  • составлять уравнения по тексту задачи;
  • составлять задачу по схеме;
  • составлять задачи к данному уравнению;
  • оценить результат своей работы и результат работы групп;
  • работать в группе.

Этапы урока:

  1. Обзор
  2. Мотивация
  3. Составление и решение задач
  4. Применение. Работа в группе
  5. Обмен информацией
  6. Рефлексия
  7. Итог урока
  8. Домашнее задание

Материалы к уроку:

  1. Таблички с формулами: S = v · t, А = N · t, Д = N · t, С = Ц · К.
  2. Листы бумаги с незаполненными таблицами.
  3. Карточки для работы в группах.
  4. Ватман, фломастеры.

Ход урока

I. Обзор

— Даны два числа: 30 и 12.
— Свяжите между собой два числа: 30 и 12. (Учащиеся, используя виды сравнений, связывают эти числа различными действиями).

1) (Сумма): 30 + 12 = 42
2) (Разностное сравнение): 30 – 12 = 18
3) (Кратное сравнение): 30: 12 = 2,5 (раз)

4) (Нахождение дроби от числа):
5) (Нахождение процентов от числа):• 100% = 40%

— Сформулируйте вопрос к каждому действию.

(Ответы учащихся:
— Чему равна сумма чисел 30 и 12?
— На сколько одно число больше (меньше) другого?
— Во сколько раз одно число больше другого?
— Какую часть составляет одно число от другого?
— Сколько процентов составляет одно число от другого?)

В ходе обсуждения повторяются так же правила нахождения дроби от числа, процента от числа.

II. Мотивация

Учитель: Итак, используя эти два числа 30 и 12, мы составим задачи. Ещё Джанни Родари говорил, что чтобы научиться думать, надо научиться придумывать. Эти слова можно перефразировать так: «Для того чтобы научиться решать задачи, надо научиться их составлять».

— Как составлять задачи? Как авторы учебников составляют задачи?

Вот этому мы сегодня будем учиться.

— Представим себе: утро, вы собираетесь и идёте в школу (проходите какое – то расстояние S), далее, вы идете в школу, родители – на работу (выполняете какую – то работу Р). Для чего работать? Заработать деньги (Д – деньги). Для чего нужны деньги? Чтобы покупать в магазине товар (С – стоимость).

На доске появляется такая схема:

III. Составление задач и решение задач вместе с учителем

— Начнем с задач на стоимость.

— Cоставим задачу, извлекая данные из таблицы:

ВеличиныЦена, р.Кол-во, кгСтоимость, р.
I яблоки30260
II груши1203360
На 1Всего: 420

(В таблице выделенные данные становятся неизвестными величинами, а невыделенные – известными).

Дети составляют задачу по схеме: 30; 120; на 1; 420.

Мама купила яблоки и груши на сумму 420 рублей. Сколько килограммов яблок купила мама, если яблоки стоят 30 рублей за килограмм, а груши – 120 рублей?
(можно задать еще 3 вопроса к этой задаче по числу выделенных чисел).

(учащиеся рассуждая, заполняют пустые клетки таблицы)

ВеличиныЦена, р.Кол-во, кгСтоимость, р.
I яблоки30х30х
II груши120х + 1120(х + 1)
На 1Всего: 420

Пусть х(кг) купили яблок, тогда груш купили (х + 1)кг; 30х(р.) уплатили за яблоки и 120(х + 1)р. уплатили за груши.
Зная, что за всю покупку уплатили 420 рублей, составим и решим уравнение: 30х + 120(х + 1) = 420 .
30х + 120х + 120 = 420
150х + 120 = 420
150х = 420 — 120
150х = 300
х = 300 : 150
х = 2.

Итак, 2кг яблок купила мама.

(проверим ответ, сверяя с данными таблицы № 1).

Ответ: мама купила 2кг яблок.

— Составим еще 2 уравнения к этой задаче.

— Сформулируйте вопрос на нахождение количества купленных груш.
Сколько килограммов груш купила мама?

ВеличиныЦена, р.Кол-во, кгСтоимость, р.
I яблоки30у — 130(у — 1)
II груши120у120у
На 1Всего: 420

Пусть у (кг) груш купила мама, тогда (у — 1)кг купили яблок. 30(у — 1)р. — она уплатила за яблоки; 120у (р.) – мама уплатила за груши.
По условию задачи известно, что за всю покупку мама уплатила 420 рублей.
Составим и решим второе уравнение: 30(у — 1) + 120у = 420 .
30у — 30 + 120у = 420
150у = 420 + 30
150у = 450
у = 3.

Итак, 3кг яблок купила мама.

(Сверяем полученный результат с данными в таблице № 1).

Ответ: мама купила 3кг яблок.

— Сформулируйте вопрос на нахождение стоимости яблок.
Сколько денег мама уплатила за яблоки?

ВеличиныЦена, р.Кол-во, кгСтоимость, р.
I яблоки30z / 30z
II груши120(z / 30) + 1120 · ((z / 30) + 1)
На 1Всего: 420

Составим и решим уравнение: z + 120((z / 30) + 1) = 420 .
z + 120(z / 30) + 120 = 420
z + 4z + 120 = 420
5z = 420 — 120
5z = 300
z = 60.

Итак, 60 рублей мама уплатила за яблоки.

(проверим ответ, сверяя с данными таблицы № 1). Получилось!

Ответ: 60 рублей мама уплатила за яблоки.

— Сформулируйте четвертый вопрос.
Сколько денег мама уплатила за груши?

ВеличиныЦена, р.Кол-во, кгСтоимость, р.
I яблоки30(a / 120) — 130((a / 120) — 1)
II груши120a / 120а
На 1Всего: 420

Составим и решим уравнение: 30((a / 120) — 1) + а = 420 .
30a / 120 — 30 + а = 420
a / 4 — 30 + а = 420
5a / 4 — 30 = 420
5a / 4 = 420 + 30
5a / 4 = 450
a = 360.

Итак, за груши мама уплатила 360 рублей.
(проверим ответ, сверяя с данными таблицы № 1). Получилось!

Ответ: 360 рублей мама уплатила за груши.

— К составленным четырем уравнениям придумайте задачи на движение, работу.
(Заслушиваются составленные задачи, в ходе обсуждения корректируется текст задач).

IV. Применение (Работа в группах)

(Формируется 6 групп по 4 человека в каждой группе. Задачи предлагаются на разные темы).

Задание группе №1
А) Решить задачу, заполняя таблицу:
У кассира набралось монет достоинством в 50, 20 и 10 р. всего на сумму 1600 рублей. Определить, сколько было монет каждого достоинства, если число 20-рублевых монет было на 10 меньше, чем 50-рублевых, а число 10-рублевых монет было в 2 раза больше, чем 50-рублевых.

ВеличиныN — достоинствоК — кол-во, шт.Д — деньги, р.
I монеты по 50 р.50
II монеты по 20 р.20
III монеты по 10р.10
На 10; в 2 разаВсего: 1600

Б) Составить задачу про монеты 20, 10, 5 р. Рассказать условие задачи по её уравнению
5х + 3·(х + 40) + 2·(х + 40)·3 = 4800.
В) Проверить тождество 50·3 + 20·(3 + 5) + 10(3·5) = 460.
Заменить в тождестве число 3 всюду буквой в. Составить задачу и решить её.

Задание группе № 2
А) Длина прямоугольника в 2 раза больше его ширины. Когда длину прямоугольника увеличили на 3м, а ширину оставили той же самой, то площадь прямоугольника увеличилась на 36м 2 . Найти первоначальные размеры прямоугольника. (Изобразить условие на рисунке).
Б) Составить и решить задачу про площади двух прямоугольников на основе уравнения
(х + 12)2хх·2х = 48.
В) Составить и решить аналогичную задачу на основе тождества
(20 + 5)·4·20 — 20·(4·20) = 400.
Проверить тождество. Всюду в нем заменить число 20 буквой у.

Задание группе № 3
А) Решить задачу, заполняя таблицу:

Величиныv – скорость, км/чt – время, чS – расстояние, км
I
II

По круговой дорожке, длина которой 360м, движутся навстречу друг другу два конькобежца. Скорость первого конькобежца на 2м/с больше скорости второго. Определить скорости конькобежцев, если они встречаются через каждые 90с.
Б) Рассказать и решить задачу на основе следующего уравнения:
30х + 30(х — 2) = 240.
В) Составить и решить задачу на основе числового тождества
20·8 + 20(8 – 3) = 260. Всюду в тождестве заменить число 8 буквой а.

Задание группе № 4
А) Решите задачу:
Во дворе бегают куры и поросята, причем число голов равно 19, а число ног 54. Сколько кур и сколько поросят?
Б) Составить и решить похожую задачу к следующему уравнению:
4в + 2·(10 – в) = 38.
В) Составить задачу про число вершин 15 различных многоугольников (из них 8 квадратов, а остальные – треугольники) на основе тождества
4·8 + 3(15 – 8) = 53. Заменить в тождестве число 8 буквой у. Рассказать условие задачи. Решить задачу.

Задание группе № 5
А) Мастер изготовляет на 8 деталей в час больше, чем ученик. Ученик работал 6 часов, мастер – 8 часов, и вместе они изготовили 232 детали. Сколько деталей в час изготовлял ученик?
Б) Рассказать и решить аналогичную задачу на основе следующего уравнения:
30х + 30(х — 2) = 240.
В) Составить и решить задачу на основе числового тождества
20·8 + 20(8 – 3) = 260. Всюду в тождестве заменить число 8 буквой а.

Задание группе № 6
А) Решить задачу, заполняя таблицу:

ВеличиныV – скорость, км/чt – время, чS – расстояние, км
I
II.

Фермер ехал от села до станции на велосипеде со скоростью 15км/ч, а от станции до города поездом со скоростью 50км/ч. Весь путь он проехал за 5ч. Сколько часов он ехал на велосипеде и сколько поездом, если поездом он проехал расстояние, на 55км большее, чем на велосипеде?
Б) Составить и решить задачу на основе следующего уравнения:
12к — 4·(6 – к) = 8.
В) Составить и решить задачу на основе тождества:
6·80 — 5·(100 – 80) = 380.
Проверить это равенство. Заменить в нем число 80 буквой х. Рассказать условие составленной задачи.

V. Обмен информацией

Группы представляют результаты своей работы: зачитывают задачи, показывают решение и схемы, определяют вид задачи, отвечают на вопросы, которые возникли у учащихся.

VI. Рефлексия

Учащиеся оценивают свою работу на уроке, оценивают ответы учащихся, что получилось, чему ещё надо научиться.

VII. Итог урока

VIII. Домашнее задание

1) Составить уравнение на основе тождества, заменив в нем число 30 буквой k:

2) Составить задачу к полученному уравнению.

Итак, в ходе урока учащиеся продемонстрируют умение:

  1. определять вид текстовой задачи;
  2. устанавливать связи между компонентами задачи;
  3. находить способ решения, соответствующий условию задачи;
  4. составлять символические схемы и таблицы;
  5. составлять уравнение к задаче;
  6. составлять задачи по заданному уравнению.

Решение задач с помощью систем линейных уравнений

Алгоритм решения задачи с помощью системы линейных уравнений

  1. Обозначить неизвестные величины переменными («от смысла к буквам»).
  2. По условию задачи записать уравнения, связывающие обозначенные переменные.
  3. Решить полученную систему уравнений.
  4. Истолковать результат в соответствии с условием задачи («от букв к смыслу»).

Задуманы два числа. Если от первого отнять второе, то получается 10. Если к первому прибавить удвоенное второе, то получается 91. Найдите задуманные числа.

«От смысла к буквам»:

Пусть x и y — задуманные числа.

Уравнения по условию задачи::

Решение системы уравнений:

«От букв к смыслу»:

Задуманы числа 37 и 27.

Примеры

Пример 1. Периметр прямоугольника равен 48 см. Его длина больше ширины в 3 раза.

Найдите стороны прямоугольника.

Пусть a и b — длина и ширина прямоугольника.

$$ <\left\< \begin P = 2(a+b) = 48 \\ a = 3b \end \right.> \Rightarrow <\left\< \begin a+b = 24 \\ a = 3b \end \right.> \Rightarrow <\left\< \begin 3b+b = 24 \\ a = 3b \end \right.> \Rightarrow <\left\< \begin 4b = 24 \\ a = 3b \end \right.> \Rightarrow <\left\< \begin a = 18 \\ b = 6 \end \right.> $$

Ответ: длина прямоугольника 18 см, ширина 6 см.

Пример 2. Два программиста из Бомбея, работающие в одном проекте, написали 100500 строк кода. Первый работал 70 дней, второй – 100 дней. Сколько строк писал каждый программист ежедневно, если за первые 30 дней первый написал на 5550 строк больше, чем второй?

Пусть x — ежедневное количество строк для 1-го программиста, y- для 2-го.

$$ <\left\< \begin 70x+100y = 100500 |:10 \\ 30x-30y = 5550 |:30 \end \right.> (-) \Rightarrow <\left\< \begin 7x+10y = 10050 \\ x-y=185 | \times 10 \end \right.>$$

$$ \Rightarrow (+) <\left\< \begin 7x+10y = 10050 \\ 10x-10y = 1850 \end \right.> \Rightarrow <\left\< \begin 17x = 11900 \\ y = x-185 \end \right.> \Rightarrow <\left\< \begin x = 700 \\ y = 515 \end \right.> $$

Ответ: 700 строк и 515 строк

Пример 3. За 2 кг конфет и 3 кг печенья заплатили 1540 руб. Сколько стоит 1 кг конфет и 1 кг печенья, если 2 кг печенья дороже 1 кг конфет на 210 руб.?

Пусть x — цена за 1 кг конфет, y — за 1 кг печенья.

$$ <\left\< \begin 2x+3y = 1540 \\ 2y-x = 210 | \times 2 \end \right.> \Rightarrow (+) <\left\< \begin 2x+3y = 1540 \\ -2x+4y = 420 \end \right.> \Rightarrow <\left\< \begin 7y = 1960 \\ x = 2y-210 \end \right.> \Rightarrow <\left\< \begin x = 350 \\ y = 280 \end \right.> $$

Ответ: 1 кг конфет — 350 руб. и 1 кг печенья — 280 руб.

Пример 4. Катер за 3 ч движения против течения реки и 2 часа по течению проходит 73 км. Найдите собственную скорость катера и скорость течения, если за 4 ч движения по течению катер проходит на 29 км больше, чем за 3 ч движения против течения.

Пусть v — скорость катера (км/ч), u — скорость течения (км/ч).

$$ \Rightarrow <\left\< \begin 5v-u = 73 \\ v+7u = 29 \end \right.> \Rightarrow <\left\< \begin 5(29-7u)-u = 73 \\ v = 29-7u \end \right.> \Rightarrow <\left\< \begin 145-35u-u = 73 \\ v = 29-7u \end \right.> \Rightarrow$$

Ответ: скорость катера 15 км/ч и скорость течения 2 км/ч

Пример 5. 5 карандашей и 3 тетрадки вместе стоили 170 руб. После того, как карандаши подешевели на 20%, а тетрадки подорожали на 30%, за 3 карандаша и 5 тетрадок заплатили 284 руб. Найдите первоначальную цену карандаша и тетрадки.

Пусть x – первоначальная цена карандаша, y — тетрадки.

$$ <\left\< \begin 5x+3y = 170 \\ 3\cdot0,8x+5\cdot1,3y = 284 \end \right.> \Rightarrow <\left\< \begin 5x+3y = 170 |\times \frac<2,4> <5>\\ 2,4x+6,5y = 284 \end \right.> \Rightarrow (-) <\left\< \begin 2,4x+1,44y = 81,6 \\ 2,4x+6,5y = 284 \end \right.> $$

Ответ: карандаш сначала стоил 10 руб., тетрадка — 40 руб.

Пример 6*. Велосипедист планирует добраться из пункта А в пункт В. Если он будет ехать на 3 км/ч быстрее, чем обычно, он доберётся на 1 час раньше. А если он будет ехать на 2 км/ч медленней, чем обычно, то – на 1 час позже. Найдите обычную скорость велосипедиста и время поездки при этой скорости.

Пусть v – обычная скорость велосипедиста (км/ч), t — обычное время (ч).

Расстояние между А и В неизменно, и по условию равно:

Ответ: обычная скорость 12 км/ч, время 5 ч

Пример 7*. В одной бочке налито 12 л, во второй – 32 л. Если первую бочку доверху наполнить водой из второй, то вторая бочка будет наполнена ровно наполовину своего объёма. Если вторую бочку доверху наполнить водой из первой, то первая бочка будет наполнена на 1/6 своего объёма. Найдите объём каждой бочки.

Пусть x — объём первой бочки (л), y – объём второй (л).

Пусть a л перелито из второй бочки, и первая наполнилась до краёв, а во второй воды осталось наполовину:

Теперь пусть b л перелито из первой бочки, и вторая наполнилась до краёв, а в первой воды осталось на 1/6:

$$ <\left\< \begin x+ \frac<1> <2>y = 44 | \times 2 \\ \frac<1> <6>x+y = 44 \end \right.> \Rightarrow (-) <\left\< \begin 2x+y = 88 \\ \frac<1> <6>x+y = 44 \end \right.> \Rightarrow (+) <\left\< \begin 1\frac<5> <6>x = 44 \\ y = 88-2x \end \right.> \Rightarrow $$

Ответ: первая бочка 24 л, вторая – 40 л

Пример 8*. Если школьник едет в школу на автобусе, а возвращается домой пешком, то он тратит на всю дорогу полтора часа. Если он едет туда и обратно на автобусе, то он тратит полчаса. Сколько времени потратит школьник, если он пойдёт туда и обратно пешком?

Пусть s — расстояние между домом и школой, v — скорость автобуса, u — скорость школьника, t — искомое время, потраченное на дорогу туда и обратно пешком.

По условию задачи:

Из второго уравнения $ \frac = \frac<0,5> <2>= 0,25 $. Подставляем в первое уравнение:

И тогда искомое время:

$$ t = \frac<2s> = 2\cdot1,25 = 2,5 (ч) $$

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Немного теории.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\< \begin 3x+y=7 \\ -5x+2y=3 \end \right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ \left\< \begin y = 7—3x \\ -5x+2(7-3x)=3 \end \right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\< \begin 2x+3y=-5 \\ x-3y=38 \end \right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ \left\< \begin 3x=33 \\ x-3y=38 \end \right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение \( x-3y=38 \) получим уравнение с переменной y: \( 11-3y=38 \). Решим это уравнение:
\( -3y=27 \Rightarrow y=-9 \)

Таким образом мы нашли решение системмы уравнений способом сложения: \( x=11; y=-9 \) или \( (11; -9) \)

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.


источники:

http://reshator.com/sprav/algebra/7-klass/resheniya-zadachi-s-pomoshchyu-sistemy-linejnyh-uravnenij/

http://www.math-solution.ru/math-task/sys-lin-eq