Составление и решение линейного уравнения якласс

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Составление и решение задач с помощью линейных уравнений в 7-м классе

Разделы: Математика

Основная цель: учить составлять уравнения к задаче.

В ходе урока учащиеся смогут:

  • находить связи между данными в задаче;
  • использовать виды сравнения при составлении задач;
  • решать линейные уравнения;
  • составлять уравнения по тексту задачи;
  • составлять задачу по схеме;
  • составлять задачи к данному уравнению;
  • оценить результат своей работы и результат работы групп;
  • работать в группе.

Этапы урока:

  1. Обзор
  2. Мотивация
  3. Составление и решение задач
  4. Применение. Работа в группе
  5. Обмен информацией
  6. Рефлексия
  7. Итог урока
  8. Домашнее задание

Материалы к уроку:

  1. Таблички с формулами: S = v · t, А = N · t, Д = N · t, С = Ц · К.
  2. Листы бумаги с незаполненными таблицами.
  3. Карточки для работы в группах.
  4. Ватман, фломастеры.

Ход урока

I. Обзор

— Даны два числа: 30 и 12.
— Свяжите между собой два числа: 30 и 12. (Учащиеся, используя виды сравнений, связывают эти числа различными действиями).

1) (Сумма): 30 + 12 = 42
2) (Разностное сравнение): 30 – 12 = 18
3) (Кратное сравнение): 30: 12 = 2,5 (раз)

4) (Нахождение дроби от числа):
5) (Нахождение процентов от числа):• 100% = 40%

— Сформулируйте вопрос к каждому действию.

(Ответы учащихся:
— Чему равна сумма чисел 30 и 12?
— На сколько одно число больше (меньше) другого?
— Во сколько раз одно число больше другого?
— Какую часть составляет одно число от другого?
— Сколько процентов составляет одно число от другого?)

В ходе обсуждения повторяются так же правила нахождения дроби от числа, процента от числа.

II. Мотивация

Учитель: Итак, используя эти два числа 30 и 12, мы составим задачи. Ещё Джанни Родари говорил, что чтобы научиться думать, надо научиться придумывать. Эти слова можно перефразировать так: «Для того чтобы научиться решать задачи, надо научиться их составлять».

— Как составлять задачи? Как авторы учебников составляют задачи?

Вот этому мы сегодня будем учиться.

— Представим себе: утро, вы собираетесь и идёте в школу (проходите какое – то расстояние S), далее, вы идете в школу, родители – на работу (выполняете какую – то работу Р). Для чего работать? Заработать деньги (Д – деньги). Для чего нужны деньги? Чтобы покупать в магазине товар (С – стоимость).

На доске появляется такая схема:

III. Составление задач и решение задач вместе с учителем

— Начнем с задач на стоимость.

— Cоставим задачу, извлекая данные из таблицы:

ВеличиныЦена, р.Кол-во, кгСтоимость, р.
I яблоки30260
II груши1203360
На 1Всего: 420

(В таблице выделенные данные становятся неизвестными величинами, а невыделенные – известными).

Дети составляют задачу по схеме: 30; 120; на 1; 420.

Мама купила яблоки и груши на сумму 420 рублей. Сколько килограммов яблок купила мама, если яблоки стоят 30 рублей за килограмм, а груши – 120 рублей?
(можно задать еще 3 вопроса к этой задаче по числу выделенных чисел).

(учащиеся рассуждая, заполняют пустые клетки таблицы)

ВеличиныЦена, р.Кол-во, кгСтоимость, р.
I яблоки30х30х
II груши120х + 1120(х + 1)
На 1Всего: 420

Пусть х(кг) купили яблок, тогда груш купили (х + 1)кг; 30х(р.) уплатили за яблоки и 120(х + 1)р. уплатили за груши.
Зная, что за всю покупку уплатили 420 рублей, составим и решим уравнение: 30х + 120(х + 1) = 420 .
30х + 120х + 120 = 420
150х + 120 = 420
150х = 420 — 120
150х = 300
х = 300 : 150
х = 2.

Итак, 2кг яблок купила мама.

(проверим ответ, сверяя с данными таблицы № 1).

Ответ: мама купила 2кг яблок.

— Составим еще 2 уравнения к этой задаче.

— Сформулируйте вопрос на нахождение количества купленных груш.
Сколько килограммов груш купила мама?

ВеличиныЦена, р.Кол-во, кгСтоимость, р.
I яблоки30у — 130(у — 1)
II груши120у120у
На 1Всего: 420

Пусть у (кг) груш купила мама, тогда (у — 1)кг купили яблок. 30(у — 1)р. — она уплатила за яблоки; 120у (р.) – мама уплатила за груши.
По условию задачи известно, что за всю покупку мама уплатила 420 рублей.
Составим и решим второе уравнение: 30(у — 1) + 120у = 420 .
30у — 30 + 120у = 420
150у = 420 + 30
150у = 450
у = 3.

Итак, 3кг яблок купила мама.

(Сверяем полученный результат с данными в таблице № 1).

Ответ: мама купила 3кг яблок.

— Сформулируйте вопрос на нахождение стоимости яблок.
Сколько денег мама уплатила за яблоки?

ВеличиныЦена, р.Кол-во, кгСтоимость, р.
I яблоки30z / 30z
II груши120(z / 30) + 1120 · ((z / 30) + 1)
На 1Всего: 420

Составим и решим уравнение: z + 120((z / 30) + 1) = 420 .
z + 120(z / 30) + 120 = 420
z + 4z + 120 = 420
5z = 420 — 120
5z = 300
z = 60.

Итак, 60 рублей мама уплатила за яблоки.

(проверим ответ, сверяя с данными таблицы № 1). Получилось!

Ответ: 60 рублей мама уплатила за яблоки.

— Сформулируйте четвертый вопрос.
Сколько денег мама уплатила за груши?

ВеличиныЦена, р.Кол-во, кгСтоимость, р.
I яблоки30(a / 120) — 130((a / 120) — 1)
II груши120a / 120а
На 1Всего: 420

Составим и решим уравнение: 30((a / 120) — 1) + а = 420 .
30a / 120 — 30 + а = 420
a / 4 — 30 + а = 420
5a / 4 — 30 = 420
5a / 4 = 420 + 30
5a / 4 = 450
a = 360.

Итак, за груши мама уплатила 360 рублей.
(проверим ответ, сверяя с данными таблицы № 1). Получилось!

Ответ: 360 рублей мама уплатила за груши.

— К составленным четырем уравнениям придумайте задачи на движение, работу.
(Заслушиваются составленные задачи, в ходе обсуждения корректируется текст задач).

IV. Применение (Работа в группах)

(Формируется 6 групп по 4 человека в каждой группе. Задачи предлагаются на разные темы).

Задание группе №1
А) Решить задачу, заполняя таблицу:
У кассира набралось монет достоинством в 50, 20 и 10 р. всего на сумму 1600 рублей. Определить, сколько было монет каждого достоинства, если число 20-рублевых монет было на 10 меньше, чем 50-рублевых, а число 10-рублевых монет было в 2 раза больше, чем 50-рублевых.

ВеличиныN — достоинствоК — кол-во, шт.Д — деньги, р.
I монеты по 50 р.50
II монеты по 20 р.20
III монеты по 10р.10
На 10; в 2 разаВсего: 1600

Б) Составить задачу про монеты 20, 10, 5 р. Рассказать условие задачи по её уравнению
5х + 3·(х + 40) + 2·(х + 40)·3 = 4800.
В) Проверить тождество 50·3 + 20·(3 + 5) + 10(3·5) = 460.
Заменить в тождестве число 3 всюду буквой в. Составить задачу и решить её.

Задание группе № 2
А) Длина прямоугольника в 2 раза больше его ширины. Когда длину прямоугольника увеличили на 3м, а ширину оставили той же самой, то площадь прямоугольника увеличилась на 36м 2 . Найти первоначальные размеры прямоугольника. (Изобразить условие на рисунке).
Б) Составить и решить задачу про площади двух прямоугольников на основе уравнения
(х + 12)2хх·2х = 48.
В) Составить и решить аналогичную задачу на основе тождества
(20 + 5)·4·20 — 20·(4·20) = 400.
Проверить тождество. Всюду в нем заменить число 20 буквой у.

Задание группе № 3
А) Решить задачу, заполняя таблицу:

Величиныv – скорость, км/чt – время, чS – расстояние, км
I
II

По круговой дорожке, длина которой 360м, движутся навстречу друг другу два конькобежца. Скорость первого конькобежца на 2м/с больше скорости второго. Определить скорости конькобежцев, если они встречаются через каждые 90с.
Б) Рассказать и решить задачу на основе следующего уравнения:
30х + 30(х — 2) = 240.
В) Составить и решить задачу на основе числового тождества
20·8 + 20(8 – 3) = 260. Всюду в тождестве заменить число 8 буквой а.

Задание группе № 4
А) Решите задачу:
Во дворе бегают куры и поросята, причем число голов равно 19, а число ног 54. Сколько кур и сколько поросят?
Б) Составить и решить похожую задачу к следующему уравнению:
4в + 2·(10 – в) = 38.
В) Составить задачу про число вершин 15 различных многоугольников (из них 8 квадратов, а остальные – треугольники) на основе тождества
4·8 + 3(15 – 8) = 53. Заменить в тождестве число 8 буквой у. Рассказать условие задачи. Решить задачу.

Задание группе № 5
А) Мастер изготовляет на 8 деталей в час больше, чем ученик. Ученик работал 6 часов, мастер – 8 часов, и вместе они изготовили 232 детали. Сколько деталей в час изготовлял ученик?
Б) Рассказать и решить аналогичную задачу на основе следующего уравнения:
30х + 30(х — 2) = 240.
В) Составить и решить задачу на основе числового тождества
20·8 + 20(8 – 3) = 260. Всюду в тождестве заменить число 8 буквой а.

Задание группе № 6
А) Решить задачу, заполняя таблицу:

ВеличиныV – скорость, км/чt – время, чS – расстояние, км
I
II.

Фермер ехал от села до станции на велосипеде со скоростью 15км/ч, а от станции до города поездом со скоростью 50км/ч. Весь путь он проехал за 5ч. Сколько часов он ехал на велосипеде и сколько поездом, если поездом он проехал расстояние, на 55км большее, чем на велосипеде?
Б) Составить и решить задачу на основе следующего уравнения:
12к — 4·(6 – к) = 8.
В) Составить и решить задачу на основе тождества:
6·80 — 5·(100 – 80) = 380.
Проверить это равенство. Заменить в нем число 80 буквой х. Рассказать условие составленной задачи.

V. Обмен информацией

Группы представляют результаты своей работы: зачитывают задачи, показывают решение и схемы, определяют вид задачи, отвечают на вопросы, которые возникли у учащихся.

VI. Рефлексия

Учащиеся оценивают свою работу на уроке, оценивают ответы учащихся, что получилось, чему ещё надо научиться.

VII. Итог урока

VIII. Домашнее задание

1) Составить уравнение на основе тождества, заменив в нем число 30 буквой k:

2) Составить задачу к полученному уравнению.

Итак, в ходе урока учащиеся продемонстрируют умение:

  1. определять вид текстовой задачи;
  2. устанавливать связи между компонентами задачи;
  3. находить способ решения, соответствующий условию задачи;
  4. составлять символические схемы и таблицы;
  5. составлять уравнение к задаче;
  6. составлять задачи по заданному уравнению.

Линейное уравнение с одной переменной

Содержание

Что такое уравнение

Для изучения темы линейного уравнения вспомним, что уравнением называют равенство, в составе которого есть неизвестное число. Это неизвестное число-переменную нам и нужно найти.

К примеру, не будут уравнениями выражения $3n-4$ или $d + 8$. Ведь в них не требуется найти значение переменной и отсутствует знак равенства. Это просто буквенные выражения. А вот записи: $4y-7 = 13$ или $-5x = 6x-2$ являются уравнениями.

Чаще всего уравнения используют, чтобы решить задачу.

Приведем пример

Папе и сыну вместе $45$ лет, при этом известно, что отец старше на $19$ лет. Найдем, сколько лет каждому из них?

Обозначим возраст сына за $x$, тогда папе будет $x+19$ лет. Получим уравнение: $x + (x + 19) = 45$, так как по условию вместе им $45$ лет. Решим:

после раскрытия скобок: $2x + 19 = 45$,

То есть с помощью составления уравнения мы выяснили, что сыну $13$ лет. Отцу тогда $32$ года $(13 + 19)$. И вместе им действительно $45$ лет: $$13 + 32 = 45$$

Таким образом, записав по условию задачи уравнение, мы смоделировали алгебраическую модель ситуации.

Неизвестная переменная может обозначаться в уравнении не только буквами $x$ или $y$, но и любыми другими латинскими буквами.

Когда от нас требуется решить уравнение, мы должны найти все его корни либо показать, что их нет.

Корень уравнения – это значение неизвестной переменной, превращающее уравнение в верное равенство.

Рассмотрим пример

Выясним, является ли корнем этого уравнения $x = 4$. Подставим $4$ вместо $x$ и получим: $$<3\times 4>-1 = 5$$$$12-1 = 5$$$$11 = 5$$

При решении мы поняли, что $x ≠ 4$, так как $11 ≠ 5$. То есть число $4$ не может быть корнем данного в задании уравнения. Посчитайте самостоятельно, какой корень у этого уравнения?

Корней может быть несколько, один или не быть совсем. В последнем случае говорят обычно, что уравнение не имеет решения или не имеет корней.

В примере с папой и сыном корень уравнения единственный: $x = 13$. Ведь нет других вариантов решения, при которых будут выполнены все условия и получится верное равенство. Проверьте сами?

Что такое линейное уравнение

Если числа в конечном уравнении $2x = 26$ к нашему первому примеру заменить на буквы $a$ и $b$, мы получим уравнение вида $ax = b$.

Подобные уравнения и называются линейными.

Уравнения вида $ax = b$, где $x$ — переменная, $a$ и $b$ — некоторые числа, называются линейными уравнениями с одной переменной

Когда уравнения содержат, к примеру, степень: $$x^2 + 3 = 7$$ или неизвестная переменная находится в знаменателе дроби: $$\frac <8> — 3 = 0$$ они не будут называться линейными.

Иногда в составе уравнения есть несколько переменных, это тоже не наш случай: такие уравнения будут изучаться позже.

Коэффициенты и решение линейных уравнений

Числа $a$ и $b$ в линейном уравнении называют коэффициентами. Они могут быть выражены любыми числами, в том числе отрицательными или дробными. При этом $a$ называют коэффициентом при неизвестной переменной, а коэффициент $b$ свободным.

В наших примерах у уравнений был единственный корень. Наверное, вы заметили, что в них коэффициенты $a$ и $b$ были равны числам, отличным от нуля. Подобные уравнения решаются по простому алгоритму: $$x = \frac $$

Посмотрим, когда линейное уравнение никак не может иметь корней (или верного решения).

Попробуем взять коэффициент $a$, равный $0$, а коэффициент $b$ — любое число, не равное $0$. Тогда получим уравнение: $$0\times x = b$$ При умножении $x$ на ноль всегда будет ноль, но у нас $b ≠ 0$. Следовательно, правая и левая части такого уравнения между собой не равны, и при $a = 0$, а $b ≠ 0$ линейное уравнение не имеет верного решения.

Но линейное уравнение может иметь и множество решений. Рассмотрим такой случай. Например, что будет, если оба коэффициента равны нулю: $a = 0$ и $b = 0$? $$0\times x + 0 = 0$$ Ясно, что любое подобное уравнение с обоими коэффициентами, равными нулю, имеет бесконечно много корней. Почему? Потому что любое число при умножении на 0 дает ноль. Какое бы число вместо $x$ мы не подставили, равенство будет верным.

Таким образом, при решении линейных уравнений мы пришли к трем общим ситуациям:

Величины $a$ и $b$$a ≠ 0$, $b$ — любое$a = b = 0$$a = 0$, $b ≠ 0$
Корни уравнения $ax = b$$x = \frac $$x$ — любоекорней нет

Свойства линейных уравнений

Цель любого линейного уравнения – выразить $x$ и понять, чему он будет равен.

До того, как начать решать уравнение, над ним необходимо произвести все доступные арифметические действия, например, сложение/вычитание, раскрытие скобок, умножение/деление отдельно для свободных коэффициентов и отдельно для членов уравнения с неизвестной переменной.

Для упрощения дальнейшего решения с уравнениями можно произвести те же действия, что применяются к другим математическим выражениям.

Свойства линейных уравнений:

  1. Любой член можно перенести из одной части линейного уравнения в другую, но при этом нужно не забыть заменить знак на противоположный.

В процессе решения надо так преобразовать уравнение, чтобы все известные члены оказались с одной стороны равенства, а неизвестные — с другой.

Например: $5x = 30-3x$. Для решения перенесем $-3x$ в левую часть с противоположным знаком и получим $5x + 3x = 30$.

  1. В ходе решения обе части уравнения можно одновременно делить или умножать на какое-то одно и то же число, отличающееся от $0$. При этом равенство будет оставаться верным.

Часто второе свойство применяется в уравнениях с дробями. Например, нужно решить уравнение: $$\frac <5><2>\times x = 8$$ Чтобы избавиться от дроби, попробуем и правую и левую части уравнения умножить на $2$. Тогда мы получим: $$2\times \frac <5><2>\times x = 2\times 8$$ После умножения уравнение примет следующий вид: $$5x = 16$$

Согласитесь, такое уравнение решить намного легче. При этом после подобных преобразований равенство не нарушается, и мы получаем равносильные уравнения.


источники:

http://urok.1sept.ru/articles/532278

http://obrazavr.ru/algebra/7-klass-algebra/vyrazheniya-tozhdestva-uravneniya/uravneniya-s-odnoj-peremennoj/linejnoe-uravnenie-s-odnoj-peremennoj/