Составление уравнений реакций гидролиза солей железа

Уравнения реакций и продукты гидролиза различных солей железа (III)

Как усилить гидролиз хлорида железа (III)

Задача 1136.
Добавление каких веществ усилит гидролиз FeCl3: а) H2SO4; б) ZnCl2; в) (NH4)2CO3; г) Zn?
Решение:
а) FeCl3 – соль сильной кислоты и слабого основания гидролизуется по катиону с образованием избытка ионов водорода Н + :

Fe 3+ + H2O ⇔ FeOH 2+ + H +

При добавлении H2SO4 в раствор соли FeCl3 уменьшится степень гидролиза соли, так как дополнительное количество ионов водорода Н + от серной кислоты (H2SO4 ⇔ 2H + + SO4 2- )будет способствовать смещению равновесия в системе в сторону уменьшения концентрации ионов Н + , гидролиз соли уменьшится.

б) ZnCl2 – соль сильной кислоты и слабого основания гидролизуется по катиону с образованием избытка ионов водорода Н + :

Zn 2+ + H2O — ZnOH + + H +

Дополнительное количество ионов водорода, образуемое при гидролизе ZnCl2, будет уменьшать гидролиз FeCl3, так как, согласно принципу Ле Шателье, равновесие системы сместится влево, в сторону уменьшения концентрации ионов Н + .

в) (NH4)2CO3 – соль слабого основания и слабой кислоты гидролизуется как по катиону, так и по аниону:

При гидролизе образуется избыточное количество ионов Н + и OH – , которые связываясь друг с другом, образуют воду (Н + + OH – ⇔ Н2О). Поэтому при смешении растворов (NH4)2CO3 и FeCl3 гидролиз обеих солей будет взаимно усиливаться, так как, согласно принципу Ле Шателье, равновесие в системе сместится вправо, в сторону увеличения гидролиза.

г) Цинк в ряду напряжений металлов стоит перед водородом, поэтому при введении металлического цинка в раствор соли FeCl3 (кислая среда) будет наблюдаться окисление атомов цинка и восстановление ионов водорода:

что будет уменьшать концентрацию ионов водорода. Уменьшение концентрации ионов Н + согласно принципу Ле Шателье будет способствовать смещению равновесия системы вправо, в сторону увеличения концентрации ионов Н + , т. е. гидролиз соли будет увеличиваться.

К тому же цинк как более активный металл будет вытеснять железо из его солей, дополнительно будет протекать реакция обмена между цинком и железом:

Таким образом, цинк будет вступать в реакцию обмена с солью FeCl3 и дополнительно будет способствовать усилению гидролиза соли.

Продукты взаимодействия карбоната натрия с водным раствором сульфата железа (III)

Задача 1137.
Каковы продукты взаимодействия карбоната натрия с водным раствором Ее2(SO4)3: а) Ее(ОН)3 и СО2 б) Ее2(СО3)3 и Na2SO4?
Потому что: 1) протекает реакция обмена; 2) происходит взаимное усиление процесса гидролиза двух солей.
Решение:
N2CO3 – соль сильного основания и слабой кислоты гидролизуется по аниону с образованием избытка ионов ОН¯:

I ступень CO3 2- + H2O ⇔ HCO¯ + ОН¯;

Уравнение реакции гидролиза имеет вид:

При гидролизе образуется избыточное количество ионов ОН¯.

Ее2(SO4)3 – соль сильной кислоты и слабого основания гидролизуется по катиону с дополнительным образованием ионов Н + :

Fe 3+ + H2O ⇔ FeOH 2+ + H +

При смешении растворов N2CO3 и Ее2(SO4)3 избыточные ионы Н + и ОН¯, связываясь друг с другом образуют воду
(Н + + ОН¯ ⇔ Н2О). В результате уменьшения в системе ионов Н + и ОН¯ согласно принципу Ле Шателье равновесие сместится в сторону увеличения концентраций ионов Н + и ОН¯, т. е. гидролиз обеих солей будет усиливаться. Гидролиз Ее2(SO4)3:

Таким образом, гидролиз обеих солей будет протекать до конца с образованием Ее(ОН)3 и СО2:

I ступень Fe 3+ + H2O — FeOH 2+ + H + ;

II ступень FeOH 2+ + H2O ⇔ Fe(OH) 2+ + H +;

III ступень Fe(OH) 2+ + H2O ⇔ Fe(OH)3 ↓+ H +

Уравнение реакции гидролиза будет иметь вид:

Значит, при смешении растворов Na2CO3 и Ее2(SO4)3 будет протекать реакция по схеме:

2Fe 3+ + 3CO3 2- + 3H2O ⇔2Fe(OH)3↓ + 3CO2↑ (ионно-молекулярная форма).

Таким образом, при смешении растворов Na2CO3 и Ее2(SO4)3 образуются нерастворимый Fe(OH)3 и газообразный СО2, так как происходит взаимное усиление процесса гидролиза обеих солей.

Гидролиз хлорида железа (III)

FeCl3 — соль образованная слабым основанием и сильной кислотой, поэтому реакция гидролиза протекает по катиону.

Первая стадия (ступень) гидролиза

Молекулярное уравнение
FeCl3 + HOH ⇄ FeOHCl2 + HCl

Полное ионное уравнение
Fe 3+ + 3Cl — + HOH ⇄ FeOH 2+ + 2Cl — + H + + Cl —

Сокращенное (краткое) ионное уравнение
Fe 3+ + HOH ⇄ FeOH 2+ + H +

Вторая стадия (ступень) гидролиза

Молекулярное уравнение
FeOHCl2 + HOH ⇄ Fe(OH)2Cl + HCl

Полное ионное уравнение
FeOH 2+ + 2Cl — + HOH ⇄ Fe(OH)2 + + Cl — + H + + Cl —

Сокращенное (краткое) ионное уравнение
FeOH 2+ + HOH ⇄ Fe(OH)2 + + H +

Третья стадия (ступень) гидролиза

Молекулярное уравнение
Fe(OH)2Cl + HOH ⇄ Fe(OH)3 + HCl

Полное ионное уравнение
Fe(OH)2 + + Cl — + HOH ⇄ Fe(OH)3 + H + + Cl —

Сокращенное (краткое) ионное уравнение
Fe(OH)2 + + HOH ⇄ Fe(OH)3 + H +

Среда и pH раствора хлорида железа (III)

В результате гидролиза образовались ионы водорода (H + ), поэтому раствор имеет кислую среду (pH

Составление уравнений реакций гидролиза солей

Гидролиз солей

Гидролизом называется процесс разложения веществ водой (само слово «гидролиз» об этом говорит: греч. – вода и – разложение). Разные авторы, давая определение этому явлению, выделяют, что при этом образуется кислота или кислая соль, основание или основная соль (Н.Е.Кузьменко); при взаимодействии ионов соли с водой образуется слабый электролит (А.Э.Антошин); в результате взаимодействия ионов соли с водой смещается равновесие электролитической диссоциации воды (А.А.Макареня); составные части растворенного вещества соединяются с составными частями воды (Н.Л.Глинка) и т.д.
Каждый автор, давая определение гидролиза, отмечает наиболее важную, на его взгляд, сторону этого сложного, многогранного процесса. И каждый из них по-своему прав. Думается, дело учителя, какому определению отдать предпочтение – что ему ближе по его образу мышления.
Итак, гидролиз – это разложение веществ водой. Причиной его является электролитическая диссоциация соли и воды на ионы и взаимодействие между ними. Вода диссоциирует незначительно на ионы Н + и ОН – ( 1 молекула из 550 000), причем в процессе гидролиза один или оба этих иона могут связываться с ионами, образующимися при диссоциации соли, в малодиссоциирующее, летучее или нерастворимое в воде вещество.
Соли, образованные сильными основаниями (NаОН, КОH, Ва(ОH)2) и сильными кислотами (Н2SO4,HCl, НNO3), гидролизу не подвергаются, т.к. образующие их катионы и анионы не способны в растворах связывать ионы Н + и ОН – (причина – высокая диссоциация).
Когда соль образована слабым основанием или слабой кислотой или оба «родителя» – слабые, соль в водном растворе подвергается гидролизу. При этом реакция среды зависит от относительной силы кислоты и основания. Другими словами, водные растворы таких солей могут быть нейтральными, кислыми или щелочными в зависимости от констант диссоциации образующихся новых веществ.
Так, при диссоциации ацетата аммония СН3СООNН4 реакция раствора будет слабощелочной, т.к. константа диссоциации NН4ОН (kдис = 6,3•10 –5 ) больше константы диссоциации СН3СООН (kдис = 1,75•10 –5 ). У другой же соли уксусной кислоты – ацетата алюминия (СН3СОО)3Al – реакция раствора будет слабокислой, т.к. kдис(СН3СООН) = 1,75•10 –5 больше kдис(Al(ОН)3) = 1,2•10 –6 .
Реакции гидролиза в одних случаях являются обратимыми, а в других – идут до конца. Количественно гидролиз характеризуется безразмерной величиной г, называемой степенью гидролиза и показывающей, какая часть от общего количества молекул соли, находящихся в растворе, подвергается гидролизу:

г = n/N•100%,

где n – число гидролизованных молекул,

N – общее число молекул в данном растворе.

Например, если г = 0,1%, то это означает, что из 1000 молекул соли водой разложилась только одна:

n = г•N/100 = 0,1•1000/100 = 1.

Степень гидролиза зависит от температуры, концентрации раствора и природы растворенного вещества. Так, если рассмотреть гидролиз cоли СН3СООNа, то степень ее гидролиза для растворов различной концентрации будет следующая: для 1М раствора – 0,003%, для 0,1М – 0,01%, для
0,01М – 0,03%, для 0,001М – 0,1% (данные взяты из книги Г.Реми). Эти значения согласуются с принципом Ле Шателье.
Повышение температуры увеличивает кинетическую энергию молекул, их распад на катионы и анионы и взаимодействие с ионами воды (Н + и ОН – ) – слабого при комнатной температуре электролита.
Учитывая природу реагирующих веществ, для связывания ионов ОН – к раствору соли можно добавить кислоту, а для связывания ионов Н + – щелочь. Можно также добавить другие соли, гидролизующиеся по противоположному иону. В этом случае происходит взаимное усиление гидролиза обеих солей.
Ослабить гидролиз можно (если это необходимо) понижением температуры, увеличением концентрации раствора, введением в него одного из продуктов гидролиза: кислоты, если при гидролизе накапливаются ионы Н + , или щелочи, если накапливаются ионы ОН – .
Все реакции нейтрализации протекают экзотермически, а гидролиза – эндотермически. Поэтому выход первых с повышением температуры уменьшается, а вторых – увеличивается.
Ионы Н + и ОН – не могут существовать в растворе в значительных концентрациях – они соединяются в молекулы воды, смещая равновесие вправо.
Разложение соли водой объясняется связыванием катионов и/или анионов диссоциированной соли в молекулы слабого электролита ионами воды (Н + и/или ОН – ), всегда имеющимися в растворе. Образование слабого электролита, осадка, газа или полное разложение нового вещества равноценно удалению ионов соли из раствора, что в соответствии с принципом Ле Шателье (действие равно противодействию) смещает равновесие диссоциации соли вправо, а следовательно, приводит к разложению соли до конца. Отсюда и появляются прочерки в таблице растворимости против ряда соединений.
Если молекулы слабого электролита образуются за счет катионов соли, то говорят, что гидролиз идет по катиону и среда будет кислая, а если за счет анионов соли, то говорят, что гидролиз идет по аниону и среда будет щелочная. Иными словами, кто сильнее – кислота или основание, – тот и определяет среду.
Гидролизу подвергаются только растворимые соли слабых кислот и/или оснований. Дело в том, что если соль малорастворима, то концентрации ее ионов в растворе ничтожно малы, и говорить о гидролизе такой соли не имеет смысла.

Составление уравнений реакций гидролиза солей

Гидролиз солей слабых многоосновных оснований и/или кислот происходит ступенчато. Число ступеней гидролиза равно наибольшему заряду одного из ионов соли.
Например:

Однако гидролиз по второй ступени и особенно по третьей идет очень слабо, поскольку г1 >> г2 >> г3.

Поэтому при написании уравнений гидролиза обычно ограничиваются первой ступенью. Если гидролиз практически завершается на первой ступени, то при гидролизе солей слабых многоосновных оснований и сильных кислот образуются основные соли, а при гидролизе солей сильных оснований и слабых многоосновных кислот образуются кислые соли.
Количество молекул воды, участвующих в процессе гидролиза соли по схеме реакции, определяется произведением валентности катиона на число его атомов в формуле соли.
Например:

2СО3 2Na + 1•2 = 2 (H2O),

Al2(SО4)3 2Al 3+ 3•2 = 6 (H2O),

Co(CH3COO)2 Со 2+ 2•1 = 2 (H2O).

Поэтому при составлении уравнения гидролиза пользуемся следующим алгоритмом (на примере гидролиза Al2(SО4)3):

1. Определяем, из каких веществ образована соль:

2. Предполагаем, как мог бы пойти гидролиз:

Al2(SО4)3 + 6Н–ОН = 2Аl 3+ + 3 + 6H + + 6OH – .

3. Поскольку Al(ОН)3 – слабое основание и его катион Al 3+ связывают ионы ОН – из воды, то процесс фактически идет так:

Al2(SO4)3 + 6Н + + 6OH – = 2Аl(ОН) 2+ + 3 + 6H + + 2OH – .

4. Сопоставляем количества оставшихся в растворе ионов Н + и ОН – и определяем реакцию среды:

6Н + + 2ОН – = 2Н2О + 4Н + кислая среда.

5. После гидролиза образовалась новая соль: (Al(ОН)2)24, или Аl2(ОН)4SO4, – дигидроксосульфат алюминия (или тетрагидроксосульфат диалюминия) – основная соль. Частично может образоваться и AlОНSО4 (гидроксосульфат алюминия), но в значительно меньшем количестве, и им можно пренебречь.

1.

2. Na2SiO3 + 2Н2О = 2Na + + + 2Н + + 2ОН – .

3. Поскольку Н2SiO3 – слабая кислота и ее ион связывает ионы Н + из воды, то фактически реакция идет так:

2Na + + + 2Н + + 2ОН – = 2Na + + Н + Н + + 2ОН – .

4. Н + + 2ОН – = Н2О + ОН – щелочная среда.

5. Na + + Н = NаНSiO3 – гидросиликат натрия – кислая соль.

Кислотность или щелочность среды легко определить по количеству оставшихся в растворе ионов Н + или ОН – при условии, что новые вещества образовались и существуют в растворе в эквивалентных отношениях и другие реактивы в ходе реакции не добавлялись. Среда может быть кислая или слабокислая (если ионов Н + мало), щелочная (если ионов ОН – много) или слабощелочная, а также нейтральная, если значения констант диссоциации слабой кислоты и слабого основания близки и все оставшиеся в растворе ионы Н + и ОН – после гидролиза снова соединились с образованием Н2О.
Мы уже отмечали, что степень гидролиза соли тем больше, чем слабее кислота или основание, образовавшие эту соль. Поэтому необходимо для помощи учащимся привести ряды анионов и катионов, соответствующие уменьшению силы кислот и оснований их образующих (по А.В.Метельскому).

Анионы: F – > > CH3COO – > H > HS – > > > > > .
Катионы: Сd 2+ > Mg 2+ > Mn 2+ > Fe 2+ > Co 2+ > Ni 2+ > > Cu 2+ > Pb 2+ > Zn 2+ > Al 2+ > Cr 2+ > Fe 2+ .

Чем правее в этих рядах расположен ион, тем с большей силой идет гидролиз образованной им соли, т.е. его основание или кислота слабее, чем у стоящих слева от него. Особенно сильно идет гидролиз солей, образованных одновременно слабыми основанием и кислотой. Но даже для них степень гидролиза обычно не превышает 1%. Тем не менее, в некоторых случаях гидролиз таких солей протекает особенно сильно и степень гидролиза достигает почти 100%. Такие соли в водных растворах не существуют, а хранятся только в сухом виде. В таблице растворимости против них стоит прочерк. Примерами таких солей могут служить ВаS, Аl2S3, Сr2(SO3)3 и другие (см. таблицу растворимости в учебниках).
Подобные соли, имеющие высокую степень гидролиза, гидролизуются полностью и необратимо, т. к. продукты их гидролиза выводятся из раствора в виде малорастворимого, нерастворимого, газообразного (летучего), малодиссоциирующего вещества или разлагаются водой на другие вещества.
Например:

Соли, полностью разлагаемые водой, нельзя получить реакцией ионного обмена в водных растворах, т.к. вместо ионного обмена более активно протекает реакция гидролиза.

2АlCl3 + 3Na2S Аl2S3 + 6NaCl (так могло бы быть),

2АlCl3 + 3Na2S + 6H2O 2Al(OH)3 + 3H2S + 6NaCl (так есть фактически).

Соли, подобные Al2S3, получают в безводных средах спеканием компонентов в эквивалентных количествах или другими способами:

Многие галогениды, как правило, активно реагируют с водой, образуя гидрид одного элемента и гидроксид другого.
Например:

СlF + H–OH HClO + HF,

PСl3+3H–OH P(OH)3+3HCl (по Л.Полингу).

Как правило, при такого рода реакциях, также называемых гидролизом, более электроотрицательный элемент соединяется с Н + , а менее электроотрицательный – с ОН – . Легко заметить, что приведенные выше реакции протекают в соответствии с этим правилом.
Кислые соли слабых кислот также подвергаются гидролизу. Однако в этом случае наряду с гидролизом протекает диссоциация кислотного остатка. Так, в растворе NaHCО3 одновременно протекают гидролиз H , приводящий к накоплению ОH – -ионов:

Н + Н–ОН Н2СО3 + ОH – ,

и диссоциация, хотя и незначительная:

Н + H + .

Таким образом, реакция раствора кислой соли может быть как щелочной (если гидролиз аниона преобладает над его диссоциацией), так и кислой (в обратном случае). Это определяется соотношением константы гидролиза соли (Кгидр) и константы диссоциации (Кдис) соответствующей кислоты. В рассмотренном примере Кгидр аниона больше Кдис кислоты, поэтому раствор данной кислой соли имеет щелочную реакцию (что и используют страдающие изжогой от повышенной кислотности желудочного сока, хотя делают это зря). При обратном соотношении констант, например в случае гидролиза, NaHSO3, реакция раствора будет кислой.
Гидролиз основной соли, например гидроксохлорида меди(II), протекает так:

Сu(ОН)Сl + Н–ОН Сu(ОН)2 + НСl,

или в ионном виде:

СuОН + + Сl – + H + + ОH – Сu(ОН)2 + Cl – + H + среда кислая.

Гидролиз в широком смысле – это реакции обменного разложения между различными веществами и водой (Г.П.Хомченко). Такое определение охватывает гидролиз всех соединений – как неорганических (солей, гидридов, галогенидов, халькогенов и др.), так и органических (сложных эфиров, жиров, углеводов, белков и др.).
Например:

(C6H10O5)n + nH–OH nC6H12O6,

CaC2 + 2H–OH Ca(OH)2 + C2H2,

Cl2 + H–OH HCl + HClO,

PI3 + 3H–OH H3PO3 + 3HI.

В результате гидролиза минералов – алюмосиликатов – происходит разрушение горных пород. Гидролиз некоторых солей – Na2CO3, Na3РО4 – применяется для очистки воды и уменьшения ее жесткости.
Растущая быстрыми темпами гидролизная отрасль промышленности вырабатывает из отходов (древесные опилки, хлопковая шелуха, подсолнечная лузга, солома, кукурузные кочерыжки, отходы сахарной свеклы и др.) ряд ценных продуктов: этиловый спирт, кормовые дрожжи, глюкозу, «сухой лед», фурфурол, метанол, лигнин и многие другие вещества.
Гидролиз протекает в организме человека и животных при переваривании пищи (жиров, углеводов, белков) в водной среде под действием ферментов – биологических катализаторов. Он играет важную роль в ряде химических превращений веществ в природе (цикл Кребса, цикл трикарбоновых кислот) и промышленности. Поэтому нам думается, что вопросам изучения гидролиза в школьном курсе химии необходимо уделять значительно больше внимания.
Ниже приведен пример раздаточной карточки.

Алгоритм написания уравнения гидролиза Fe2(SO4)3 1. Определяем, чем образована соль: 2. Предполагаем, как мог бы пойти гидролиз: Fe2(SO4)3 + 6Н2О = 2Fe 3+ + 3 + 6H + + 6OH – . 3. Поскольку Fe(OH)3 – слабое основание, то катионы Fe 3+ будут связываться анионами ОН – из воды и гидролиз фактически будет протекать так: 2Fе 3+ + 3 + 6H + + 6OH – = 2Fe(OH) 2+ + 3 + 6H + + 2OH – . 4. Определяем реакцию среды: 6Н + + 2ОН – = 2Н2О + 4Н + кислая среда. 5. Определяем новую соль по ионам, оставшимся в растворе: 2Fe(OH) 2+ + = [Fe(OH)2]2SO4 – дигидроксосульфат железа(III) – основная соль. Гидролиз идет по катиону.
Дополнительная информация (на обороте карточки) 1. Кто сильнее – основание или кислота, тот и определяет среду: кислую или щелочную. 2. Диссоциацию и гидролиз многоосновных кислот и оснований учитываем только по первой ступени. Например: Аl(ОН)3 = Аl + ОH – , Н3РO4 = Н + + . 3. Ряд активности кислот (их силы): 4. Ряд активности оснований (их силы): 5. Чем правее в своем ряду стоит кислота и основание, тем они слабее. 6. Количество молекул воды, участвующих в гидролизе соли по схеме реакции, определяется произведением валентности катиона на число его атомов в формуле соли: Na2SO3 2Na + 1•2 = 2 (H2O), ZnCl2 1Zn 2+ 2•1 = 2 (H2O), Al2(SO4)3 2Al 3+ 3•2 = 6 (H2O). 7.Гидролиз идет по катиону, если основание слабое, и по аниону, если кислота слабая.

Применение данного алгоритма способствует осознанному написанию учащимся уравнений гидролиза и при достаточной тренировке не вызывает никаких затруднений.

ЛИТЕРАТУРА

Антошин А.Э., Цапок П.И. Химия. М.: Химия, 1998;
Ахметов Н.С. Неорганическая химия. М.: Просвещение, 1990;
Глинка Н.Л. Общая химия. Л.: Химия, 1978;
Еремин В.В., Кузьменко Н.Е. Химия. М.: Экзамен, 1998;
Еремин В.В., Кузьменко Н.Е., Попов В.А. Химия. М.: Дрофа, 1997;
Кузьменко Н.Е., Чуранов С.С. Общая и неорганическая химия. М.: Изд-во МГУ, 1977;
Метельский А.В. Химия. Минск: Белорусская энциклопедия, 1997;
Полинг Л., Полинг П. Химия. М.: Мир, 1998;
Пиментел Д.С. Химия. М.: Мир, 1967;
Фельдман Ф.Г., Рудзитис Г.Е. Химия-9. М.: Просвещение, 1997;
Холин Ю.В., Слета Л.А. Репетитор по химии. Харьков: Фолино, 1998;
Хомченко Г.П. Химия. М.: Высшая школа, 1998.


источники:

http://chemer.ru/services/hydrolysis/salts/FeCl3

http://megapredmet.ru/1-40696.html