Составьте каноническое уравнение параболы если ее фокус

Парабола

Элементы параболы
0F — фокальная ось
0 — вершина
— фокус
ε=1 — эксцентриситет
— фокальный радиус
— директриса
p — фокальный параметр

Каноническое уравнение параболы (ось Ox совпадает с фокальной осью, начало координат – с вершиной параболы): y 2 =2px
При p x 2 =2py
При p>0 ветви параболы направлены вверх, при p 2 /2+(y-1) 2 /2=1, необходимо набрать в поле x^2/2+(y-1)^2/2=1 и нажать кнопку График параболы .

Самостоятельно построить график можно, используя операцию выделения полного квадрата.

Задача 61746 Составить каноническое уравнение.

Условие

Составить каноническое уравнение параболы, если известно, что: а) парабола имеет фокус F (0, 2) и вершину в точке О (0, 0); б) парабола симметрична относительно оси абсцисс и проходит через точки О (0, 0) и М( 1, —4); в) парабола симметрична относительно оси ординат Оу и проходит через точки 0 (0, 0) и N(6, —2).

Решение

а) парабола имеет фокус F (0, 2) и вершину в точке О

О т в е т. x^2=2*4y

б) парабола симметрична относительно оси абсцисс и проходит через точку О (0, 0)

значит уравнение принимает вид:

парабола проходит через точy
М( 1, —4)

подставляем координаты точки в уравнение:

О т в е т. y^2=2*8x

в) парабола симметрична относительно оси ординат Оу и проходит через точку 0 (0, 0)

значит уравнение принимает вид:

парабола проходит через точy
N(6, —2).

Парабола — определение и вычисление с примерами решения

Парабола:

Определение: Параболой называется геометрическое место точек равноудаленных от выделенной точки F, называемой фокусом параболы, и прямой (l), называемой директрисой.

Получим каноническое уравнение параболы. Выберем декартову систему координат так, чтобы фокус F лежал на оси абсцисс, а директриса проходила бы через точку, расположенную симметрично фокусу, перпендикулярно к оси абсцисс (Рис. 34). Пусть точка M(х; у) принадлежит параболе: Вычислим расстояния от точки M(х; у) до фокуса и директрисы

Рис. 34. Парабола, (уравнение директрисы.

Возведем обе части уравнения в квадрат

Раскрывая разность квадратов, стоящую в правой части уравнения, получим каноническое уравнение параболы: (а также аналогичные ему, см. Рис. 35а и Рис. 356).

Рис. 35а. Параболы и их уравнения.

Рис. 356. Параболы и их уравнения.

Найдем координаты точек пересечения параболы с координатными осями:

  • — точка пересечения параболы с осью абсцисс;
  • — точка пересечения параболы с осью ординат.

Определение: Точка О(0; 0) называется вершиной параболы.

Если точка М(х; у) принадлежит параболе, то ей принадлежат и точка следовательно, парабола симметрична относительно оси абсцисс.

Пример:

Дано уравнение параболы Определить координаты фокуса параболы и составить уравнение параболы.

Решение:

Так как из уравнения параболы следует, что следовательно, Таким образом, фокус этой параболы лежит в точке а уравнение директрисы имеет вид

Пример:

Составить каноническое уравнение параболы, фокус которой лежит на оси Ох слева от начала координат, а параметр р равен расстоянию от фокуса гиперболы до её асимптоты.

Решение:

Для определения координат фокусов гиперболы преобразуем её уравнение к каноническому виду.

Гипербола:

Следовательно, действительная полуось гиперболы а мнимая полуось — Гипербола вытянута вдоль оси абсцисс Ох. Определим расположение фокусов данной гиперболы Итак, Вычислим расстояние от фокуса до асимптоты которое равно параметру р:

Следовательно, каноническое уравнение параболы, фокус которой лежит на оси Ох слева от начала координат имеет вид:

Пример:

Составить каноническое уравнение параболы, фокус которой совпадает с одним из фокусов эллипса Написать уравнение директрисы.

Решение:

Для определения координат фокусов эллипса преобразуем его уравнение к каноническому виду. Эллипс:

Следовательно, большая полуось эллипса а малая полуось Так как , то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Итак, Так как фокус параболы совпадает с одним из фокусов или эллипса, то параметр р найдем из равенства уравнение параболы имеет вид Директриса определяется уравнением

Уравнение параболоида вращения

Пусть вертикальная парабола

расположенная в плоскости Охz, вращается вокруг своей оси (ось Oz). При вращении получается поверхность, носящая название параболоида вращения (рис. 207).

Для вывода уравнения поверхности рассмотрим произвольную точку параболоида вращения, и пусть эта точка получена в результате вращения точки N(X, 0, Z) данной параболы вокруг точки С(0, 0, Z).

Так как точки М и N расположены в одной и той же горизонтальной плоскости и CN = СМ как радиусы одной и той же окружности, то имеем

Подставляя формулы (2) в уравнение (1), получим уравнение параболоида вращения

Заметим, что форму параболоида вращения имеет поверхность ртути, находящейся в вертикальном цилиндрическом сосуде, быстро вращающемся вокруг своей оси. Это обстоятельство используют в технике для получения параболических зеркал.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Четырехугольник
  • Многогранники
  • Окружность
  • Эллипс
  • Гипербола

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://reshimvse.com/zadacha.php?id=61746

http://www.evkova.org/parabola