Составьте кинетическое уравнение для реакции

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6dfbfe0fd806977c • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Химическая кинетика. Скорость химических реакций

Темы кодификатора ЕГЭ: Скорость реакции. Ее зависимость от разных факторов.

Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.

Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.

Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение концентрации вещества в единицу времени:

υ = ΔC / Δt

Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной, и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:

υ = Δν / (S·Δt)

Факторы, влияющие на скорость химической реакции

1. Температура

Самый простой способ изменить скорость реакции – изменить температуру . Как вам, должно быть, известно из курса физики, температура – это мера средней кинетической энергии движения частиц вещества. Если мы повышаем температуру, то частицы любого вещества начинают двигаться быстрее, а следовательно, сталкиваться чаще.

Однако при повышении температуры скорость химических реакций увеличивается в основном благодаря тому, что увеличивается число эффективных соударений. При повышении температуры резко увеличивается число активных частиц, которые могут преодолеть энергетический барьер реакции. Если понижаем температуру – частицы начинают двигаться медленнее, число активных частиц уменьшается, и количество эффективных соударений в секунду уменьшается. Таким образом, при повышении температуры скорость химической реакции повышается, а при понижении температуры — уменьшается .

Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта. Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается. Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.

Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что скорость большинства реакций примерно одинаково изменяется (примерно в 2-4 раза) при изменении температуры на 10 о С.

Правило Вант-Гоффа звучит так: повышение температуры на 10 о С приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ).

Точное значение температурного коэффициента определяется для каждой реакции.

здесь v2 — скорость реакции при температуре T2,

v1 — скорость реакции при температуре T1,

γ — температурный коэффициент скорости реакции, коэффициент Вант-Гоффа.

В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или растворители испаряются при повышенной температуре, т.е. нарушаются условия проведения процесса.

2. Концентрация

Также изменить число эффективных соударений можно, изменив концентрацию реагирующих веществ . Понятие концентрации, как правило, используется для газов и жидкостей, т.к. в газах и жидкостях частицы быстро двигаются и активно перемешиваются. Чем больше концентрация реагирующих веществ (жидкостей, газов), тем больше число эффективных соударений, и тем выше скорость химической реакции.

На основании большого числа экспериментов в 1867 году в работах норвежских ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.

Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:

здесь v — скорость химической реакции,

CA и CB — концентрации веществ А и В, соответственно, моль/л

k – коэффициент пропорциональности, константа скорости реакции.

Например , для реакции образования аммиака:

закон действующих масс выглядит так:

Константа скорости реакции k показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.

В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.

В большинстве случаев химическая реакция состоит из нескольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов. При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции. Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии).

3. Давление

Концентрация газов напрямую зависит от давления . При повышении давления повышается концентрация газов. Математическое выражение этой зависимости (для идеального газа) — уравнение Менделеева-Клапейрона:

pV = νRT

Таким образом, если среди реагентов есть газообразное вещество, то при повышении давления скорость химической реакции увеличивается, при понижении давления — уменьшается .

Например. Как изменится скорость реакции сплавления извести с оксидом кремния:

при повышении давления?

Правильным ответом будет – никак, т.к. среди реагентов нет газов, а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.

4. Катализатор

Еще один способ увеличить скорость химической реакции – направить ее по другому пути, заменив прямое взаимодействие, например, веществ А и В серией последовательных реакций с третьим веществом К, которые требуют гораздо меньших затрат энергии (имеют более низкий активационный энергетический барьер) и протекают при данных условиях быстрее, чем прямая реакция. Это третье вещество называют катализатором .

Катализаторы – это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу). Примерный механизм работы катализатора для реакции вида А + В можно представить так:

A + K = AK

AK + B = AB + K

Процесс изменения скорости реакции при взаимодействии с катализатором называют катализом. Катализаторы широко применяют в промышленности, когда необходимо увеличить скорость реакции, либо направить ее по определенному пути.

По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.

Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.

Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности. Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами. К гетерогенным катализаторам относятся металлы, цеолиты — кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.

Пример гетерогенного катализа – синтез аммиака:

В качестве катализатора используется пористое железо с примесями Al2O3 и K2O.

Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды). Их необходимо регулярно удалять, путем регенерации катализатора.

В биохимических реакция очень эффективными оказываются катализаторы – ферменты. Ферментативные катализаторы действуют эффективно и избирательно, с избирательностью 100%. К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.

Катализаторы не стоит путать с инициаторами процесса и ингибиторами.

Например , для инициирования радикальной реакции хлорирования метана необходимо облучение ультрафиолетом. Это не катализатор. Некоторые радикальные реакции инициируются пероксидными радикалами. Это также не катализаторы.

Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции. При этом ингибиторы не являются катализаторами наоборот. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.

5. Площадь соприкосновения реагирующих веществ

Для гетерогенных реакций одним из способов увеличить число эффективных соударений является увеличение площади реакционной поверхности . Чем больше площадь поверхности контакта реагирующих фаз, тем больше скорость гетерогенной химической реакции. Порошковый цинк гораздо быстрее растворяется в кислоте, чем гранулированный цинк такой же массы.

В промышленности для увеличения площади контактирующей поверхности реагирующих веществ используют метод «кипящего слоя».

Например , при производстве серной кислоты методом «кипящего слоя» производят обжиг колчедана.

6. Природа реагирующих веществ

На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ.

Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества.

Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.

Более стабильные вещества — это, например, те вещества, которые окружают нас в быту, либо существуют в природе.

Например , хлорид натрия NaCl (поваренная соль), или воды H2O, или металлическое железо Fe.

Более активные вещества мы можем встретить в быту и природе сравнительно редко.

Например , оксид натрия Na2O или сам натрий Na в быту и в природе не не встречаем, т.к. они активно реагируют с водой.

При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.

При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.

При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.

Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.

Составьте кинетическое уравнение для реакции

Для большинства сложных реакций, включающих несколько элементарных стадий, кинетические уравнения обычно настолько сложны, что их можно точно решить только численным интегрированием. В то же время, разные константы скорости, входящие в эти уравнения, отличаются друг от друга во много раз, что позволяет при решении кинетических уравнений использовать приближенные методы.

Мы рассмотрим два основных метода — метод квазистационарных (иногда просто — стационарных) концентраций и квазиравновесное приближение — на примере кинетической схемы:

1. Приближение квазистационарных концентраций применяют в том случае, когда в ходе реакции образуются неустойчивые промежуточные вещества. Если скорость распада этих веществ намного превышает скорость их образования, то концентрация веществ в любой момент времени мала. Раз мала концентрация, то мала и скорость ее изменения, которую приближенно принимают равной 0. Условие квазистационарности позволяет выражать концентрацию промежуточных веществ через концентрации исходных веществ и тем самым упрощать кинетические уравнения.

Для приведенной выше схемы система кинетических уравнений имеет вид:

Если k2 >> k1, то B — неустойчивое промежуточное вещество, концентрацию которого можно считать квазистационарной:

,

откуда . Скорость образования продукта равна:

. (6.1)

Таким образом, мы выразили скорость реакции через концентрацию исходного вещества, установили порядок реакции (первый) и выразили эффективную константу скорости через константы скорости отдельных элементарных реакций.

Приближение квазистационарных концентраций обычно применяется к реакциям с участием свободных радикалов, которые представляют собой реакционноспособные неустойчивые частицы.

2. Квазиравновесное приближение применяют в том случае, когда одна из реакций — обратимая, причем равновесие быстро устанавливается и медленно разрушается. Для приведенной выше схемы это означает, что k2 . + H . + M (k1)

H . + п-H2 H . + о-H2 (k2)

H . + H . + M п-H2 + M (k3)

Используя метод стационарных концентраций, получите выражение для скорости конверсии пара-водорода.

Решение. Из второго уравнения следует, что скорость образования орто-водорода равна:

Для того, чтобы решить задачу, надо исключить из этого выражения концентрацию неустойчивого вещества — атомов водорода. Это можно сделать, приняв, что она не изменяется со временем:

,

откуда .

При оценке скорости изменения концентрации [H] мы учли, что в первой и третьей реакциях образуются и расходуются по два атома H, а во второй реакции число атомов H не изменяется. Подставляя концентрацию [H] в выражение для скорости реакции, получаем окончательный результат:

.

Из этого результата мы видим, как в сложной реакции может получиться дробный порядок.

Пример 6-2. Механизм ренатурации ДНК из двух ветвей спирали имеет вид:

Предполагая, что первая стадия — быстрая, а вторая — медленная, выведите уравнение для скорости образования устойчивой двойной спирали и выразите общую константу скорости реакции через константы скорости элементарных стадий.

Решение. Условия задачи позволяют применить квазиравновесное приближение. Концентрация неустойчивой двойной спирали в этом приближении равна:

.

Скорость реакции определяется скоростью второй стадии:

.

Образование устойчивой двойной спирали ДНК — реакция второго порядка с эффективной константой скорости k = k1 . k2 / k-1.

6-1. Механизм некоторой ферментативной реакции имеет вид:

Используя метод квазистационарных концентраций для комплекса фермента с субстратом, выразите скорость образования продукта через текущие концентрации фермента, субстрата и продукта.(ответ)

6-2. Для реакции NO2Cl NO2 + 1/2Cl2 предложен следующий двухстадийный механизм:

NO2Cl NO2 + Cl . (k1)

NO2Cl + Cl . NO2 + Cl2 (k2)

Используя метод квазистационарных концентраций, выведите уравнение для скорости разложения NO2Cl.(ответ)

6-3. Для реакции синтеза иодоводорода из простых веществ H2 + I2 2HI предложен следующий механизм:

I2 2I . (k1)

2I . I2 (k2)

2I . + H2 2HI (k3)

Используя квазиравновесное приближение, выведите уравнение для скорости образования HI и покажите, что данная реакция имеет второй порядок.(ответ)

6-4. В одной из теорий мономолекулярных реакций предложен следующий механизм активации молекул (схема Линдемана):

активация: A + A A* + A, (k1)

дезактивация: A + A* A + A, (k-1)

распад: A* продукты. (k2)

Используя метод квазистационарных концентраций, выведите уравнение для скорости мономолекулярной реакции и определите порядок реакции при больших и малых концентрациях [A].(ответ)

6-5. Для тримолекулярной реакции 2NO + O2 2NO2 предложен следующий механизм:

2NO (NO)2, (k1, k-1)

(NO)2 + O2 2NO2. (k2)

Определите порядок суммарной реакции, предполагая, что первая стадия — быстрая, а вторая — медленная.(ответ)

6-6. Конденсация ацетона (CH3)2CO в водном растворе катализируется основаниями, которые обратимо реагируют с ним с образованием карбаниона C3H5O — . Карбанион реагирует с молекулой ацетона и дает продукт реакции. Упрощенный механизм выглядит так:

AH + B A — + BH + (k1)

A — + BH + AH + B (k2)

A — + AH продукт (k3)

Используя метод стационарных концентраций, найдите концентрацию карбаниона и выведите уравнение для скорости образования продукта.(ответ)

6-7. Составьте кинетические уравнения для следующего механизма газофазной реакции:

A B, B + C D

Определите скорость образования продукта в приближении квазистационарных концентраций. Покажите, что при высоких давлениях реакция может протекать по первому порядку, а при низких давлениях — по второму порядку.(ответ)

6-8. Химическая реакция N2O N2 + 1/2O2 протекает по следующему механизму (M — инертная частица):

N2O + M N2O* + M (k1)

N2O* N2 + O . (k2)

N2O* + M N2O + M (k3)

N2O + O . N2 + O2 (k4)

Считая концентрации N2O* и O . стационарными, найдите выражение для скорости распада N2O.(ответ)

6-9. Составьте кинетическое уравнение для скорости разложения оксида азота (V) по суммарному уравнению 2N2O5(г) 4NO2(г) + O2(г) при следующем механизме реакции:

N2O5 NO2 + NO3, (k1)

NO2 + NO3 N2O5, (k-1)

NO2 + NO3 NO2 + O2 + NO, (k2)

NO + N2O5 3NO2, (k3)(ответ)

6-10. Составьте кинетическое уравнение для скорости разложения оксида азота (V) по суммарному уравнению 2N2O5(г) 4NO2(г) + O2(г) при следующем механизме реакции:

N2O5 NO2 + NO3, (k1)

NO2 + NO3 N2O5, (k-1)

NO2 + NO3 NO2 + O2 + NO, (k2)

NO + NO3 2NO2, (k3)

Указание. Интермедиаты — NO и NO3.(ответ)

6-11. Дана схема цепной реакции:

AH A . + H . , (k1)

A . B . + C, (k2)

AH + B . A . + D, (k3)

A . + B . P. (k4)

Назовите стадии зарождения, развития и обрыва цепи. Используя метод квазистационарных концентраций, покажите, что образование продукта P описывается кинетическим уравнением первого порядка.(ответ)

6-12. Дана кинетическая схема:

CH4 + M CH3 . + H . + M, (k1)

CH3 . + CH4 C2H6 + H . , (k2)

H . + CH4 H2 + CH3 . , (k3)

H . + CH3 . + M CH4 + M, (k4)

(M — инертная молекула). Используя метод квазистационарных концентраций, выразите скорость образования этана через концентрацию метана.(ответ)

6-13. Реакция разложения бромметана 2CH3Br C2H6 + Br2 может протекать по следующему механизму:

CH3Br CH3 . + Br . , (k1)

CH3 . + CH3Br C2H6 + Br . , (k2)

Br . + CH3Br CH3 . + Br2, (k3)

2CH3 . C2H6. (k4)

Используя метод стационарных концентраций, найдите выражение для скорости образования этана.(ответ)

6-14. Термическое разложение углеводорода R2 протекает по следующему механизму:

R2 2R . (k1)

R . + R2 PB + R’ . (k2)

R’ . PA + R . (k3)

2R . PA + PB (k4)

где R2, PA, PB — устойчивые углеводороды, R . и R’ . — радикалы. Найдите зависимость скорости разложения R2 от концентрации R2.(ответ)

6-15. Дана кинетическая схема разложения ацетальдегида:

CH3CHO CH3 . + CHO (k1)

CH3 . + CH3CHO CH4 + CH2CHO . (k2)

CH2CHO . CO + CH3 . (k3)

CH3 . + CH3 . C2H6 (k4)

Используя приближение стационарных концентраций, получите выражение для скорости образования метана и скорости расходования ацетальдегида.(ответ)

6-16. Реакцию радикального дегидрирования этана можно описать с помощью механизма Райса-Герцфельда, который включает следующие стадии:

инициирование: CH3CH3 2CH3 . , (k1)

развитие цепи: CH3 . + CH3CH3 CH4 + CH3CH2 . , (k2)

CH3CH2 . CH2=СH2 + H . , (k3)

H . + CH3CH3 H2 + CH3CH2 . , (k4)

обрыв цепи: H . + CH3CH2 . CH3CH3. (k5)

Найдите уравнение для скорости образования этилена, если константа k1 мала. Как можно изменить условия, чтобы изменился порядок?(ответ)

6-17. Дана кинетическая схема дегидрирования этана:

C2H6 2CH3 . (k1)

CH3 . + C2H6 CH4 + C2H5 . (k2)

C2H5 . H . + C2H4 (k3)

H . + C2H5 . C2H6 (k4)

Используя приближение стационарных концентраций, получите выражение для скорости образования этилена.(ответ)

6-18. Химическая реакция 2C2H6 C4H10 + H2 протекает по следующему механизму:

C2H6 C2H5 . + H . (k1)

H . + C2H6 C2H5 . + H2 (k2)

C2H5 . + C2H6 C4H10 + H . (k3)

2C2H5 . C4H10 (k4)

Используя метод стационарных концентраций, получите выражение для скорости образования бутана.(ответ)

6-19. Дана кинетическая схема радикального хлорирования тетрахлорэтилена в растворе CCl4:

Cl2 2Cl . (k1)

Cl . + C2Cl4 C2Cl5 . (k2)

C2Cl5 . + Cl2 Cl . + C2Cl6 (k3)

2C2Cl5 . C2Cl6 + C2Cl4 (k4)

Используя приближение стационарных концентраций, получите выражение для скорости образования гексахлорэтана.(ответ)

6-20. Реакция образования фосгена CO + Cl2 COCl2 может протекать по следующему механизму:

Cl2 2Cl . , (k1)

2Cl . Cl2, (k2)

CO + Cl . COCl . , (k3)

COCl . CO + Cl . , (k4)

COCl . + Cl2 COCl2 + Cl . . (k5)

Используя метод стационарных концентраций, найдите выражение для скорости образования фосгена.(ответ)

Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору


источники:

http://chemege.ru/kinetika/

http://www.chem.msu.su/rus/teaching/eremin/6.html