Составьте приведенное квадратное уравнение с корнями

Квадратные уравнения

Квадратное уравнение или уравнение второй степени с одним неизвестным — это уравнение, которое после преобразований может быть приведено к следующему виду:

ax 2 + bx + c = 0 — квадратное уравнение,

где x — это неизвестное, а a, b и c — коэффициенты уравнения. В квадратных уравнениях a называется первым коэффициентом (a ≠ 0), b называется вторым коэффициентом, а c называется известным или свободным членом.

называется полным квадратным уравнением. Если один из коэффициентов b или c равен нулю, или нулю равны оба эти коэффициента, то уравнение представляют в виде неполного квадратного уравнения.

Приведённое квадратное уравнение

Полное квадратное уравнение можно привести к более удобному виду, разделив все его члены на a, то есть на первый коэффициент:

x 2 +bx +c= 0.
aa

Затем можно избавиться от дробных коэффициентов, обозначив их буквами p и q:

еслиb= p, аc= q,
aa

то получится x 2 + px + q = 0.

Уравнение x 2 + px + q = 0 называется приведённым квадратным уравнением. Следовательно, любое квадратное уравнение, в котором первый коэффициент равен 1, можно назвать приведённым.

является приведённым, а уравнение:

можно заменить приведённым уравнением, разделив все его члены на -3:

Решение квадратных уравнений

Чтобы решить квадратное уравнение, надо привести его к одному из следующих видов:

Для каждого вида уравнения есть своя формула нахождения корней:

Вид уравненияФормула корней
ax 2 + bx + c = 0
ax 2 + 2kx + c = 0
x 2 + px + q = 0
или
если коэффициент p нечётный

Обратите внимание на уравнение:

это преобразованное уравнение ax 2 + bx + c = 0, в котором коэффициент b — четный, что позволяет его заменить на вид 2k. Поэтому формулу нахождения корней для этого уравнения можно упростить, подставив в неё 2k вместо b:

Пример 1. Решить уравнение:

Так как в уравнении второй коэффициент не является чётным числом, а первый коэффициент не равен единице, то искать корни будем по самой первой формуле, называемой общей формулой нахождения корней квадратного уравнения. Сначала определим, чему равны коэффициенты:

Теперь, для нахождения корней уравнения, просто подставим значения коэффициентов в формулу:

x1 =-2= —1, x2 =-12= -2
636

Ответ:1, -2.
3

Определим, чему равны коэффициенты:

Так как в уравнении второй коэффициент — чётное число, то будем использовать формулу для квадратных уравнений с чётным вторым коэффициентом:

Приведём уравнение к общему виду:

Определим, чему равны коэффициенты:

Так как первый коэффициент равен 1, то будем искать корни по формуле для приведённых уравнений с чётным вторым коэффициентом:

Определим, чему равны коэффициенты:

Так как первый коэффициент равен 1, то будем искать корни по формуле для приведённых уравнений с нечётным вторым коэффициентом:

Составьте приведённое квадратное уравнение, если известны его корни: а) 1 и 5; б) -2 и 3; в) 4 и 6; г) -3 и -6; д) 0,5 и 4; е) 1,2 и -5; ж) 1 и -1; з) 5 и 5. Например

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,296
  • гуманитарные 33,622
  • юридические 17,900
  • школьный раздел 607,203
  • разное 16,830

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Теорема Виета

Приведенное квадратное уравнение и его корни

Приведенным квадратным уравнением называется уравнение вида:

Для корней $x_1$ и $x_2$ приведенного квадратного уравнения (при $D \ge 0$) справедливо следующее:

$$ x_1+x_2 = -b, \quad x_1 x_2 = c $$

$$ x_1 = -6, x_2 = 1, \quad x_1+x_2 = -5, \quad x_1 x_2 = -6 $$

Теорема Виета

Для корней $x_1$ и $x_2$ квадратного уравнения $ax^2+bx+c = 0$ (при $D \ge 0$) справедливо следующее:

$$ ax^2+bx+c = a(x-x_1 )(x-x_2 ) $$

$$ 2x^2+5x-3 = 2 \left(x-\frac<1> <2>\right)(x+3) $$

$$ x_1 = \frac<1><2>, x_2=-3, \quad x_1+x_2=-\frac<5><2>, \quad x_1 x_2 = — \frac<3> <2>$$

Примеры

Пример 1. Составьте квадратное уравнение по его корням:

Искомое уравнение: $x^2-3x-10 = 0$

Искомое уравнение: $x^2-3,5x-2 = 0$

$$ \left(x-\frac<1> <3>\right) \left(x-\frac<1> <2>\right) = x^2- \left(\frac<1><3>+\frac<1> <2>\right)x+\frac<1> <3>\cdot \frac<1> <2>= x^2-\frac<5> <6>x+\frac<1> <6>$$

Искомое уравнение: $x^2-\frac<5> <6>x+\frac<1> <6>= 0 или 6x^2-5x+1 = 0$

$г) \frac<3><5>$ — один корень

$$ \left(x-\frac<3> <5>\right)^2 = x^2-2 \cdot \frac<3> <5>x+ \left(\frac<3> <5>\right)^2 = x^2-\frac<6> <5>x+\frac<9><25>$$

Искомое уравнение: $x^2-\frac<6> <5>x+ \frac<9> <25>= 0$ или $25x^2-30x+9 = 0$

Пример 2. Один из корней уравнения $x^2+bx-21 = 0$ равен 3. Найдите другой корень и коэффициент b.

По теореме Виета можем записать:

Получаем: второй корень равен -7, уравнение имеет вид $x^2+4x-21 = 0$.

Ответ: $x_2$ = -7, b = 4

Пример 3. Один из корней уравнения $x^2+3x+c = 0$ равен 12. Найдите другой корень и коэффициент c.

По теореме Виета можем записать:

$$ <\left\< \begin x_2+12 = -3 \\ 12x_2 = c \end \right.> \Rightarrow <\left\< \begin x_2 = -15 \\ c = 12 \cdot (-15) = -180 \end \right.> $$

Получаем: второй корень равен -15, уравнение имеет вид $x^2+3x-180 = 0$.

Ответ: $x_2$ = -15, c = -180

Пример 4*. Дано уравнение $x^2+5x-7 = 0$ с корнями $x_1$ и $x_2$.

Не решая его, постройте уравнение:

а) с корнями $y_1 = \frac<1>, y_2 = \frac<1>$

По теореме Виета для корней исходного уравнения получаем:

Для корней искомого уравнения можем записать:

$$ y^2-\frac<5> <7>y-\frac<1> <7>= 0 \iff 7y^2-5y-1 = 0 $$

б) с корнями $y_1 = \frac ,y_2 = \frac $

Для корней искомого уравнения можем записать:

$$ y^2+\frac<39> <7>y+1 = 0 \iff 7y^2+39y+7 = 0 $$


источники:

http://www.soloby.ru/544036/%D1%81%D0%BE%D1%81%D1%82%D0%B0%D0%B2%D1%8C%D1%82%D0%B5-%D0%BF%D1%80%D0%B8%D0%B2%D0%B5%D0%B4%D1%91%D0%BD%D0%BD%D0%BE%D0%B5-%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0%B5-%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B8%D0%B7%D0%B2%D0%B5%D1%81%D1%82%D0%BD%D1%8B-%D0%BD%D0%B0%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80

http://reshator.com/sprav/algebra/8-klass/teorema-vieta/