Составьте уравнение равносильное данному 3x 2 7

Равносильные уравнения. Равносильные преобразования уравнений

Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.

  • Уравнения \(x+2=7\) и \(2x+1=11\) равносильны, так как каждое из них имеет единственный корень – число \(5\).
  • Равносильны и уравнения \(x^2+1=0\) и \(2x^2+3=1\) — ни одно из них не имеет корней.
  • А вот уравнения \(x-6=0\) и \(x^2=36\) неравносильны, поскольку первое имеет только один корень \(6\), второе имеет два корня: \(6\) и \(-6\).

Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.

Основные равносильные преобразования уравнений:

  1. Перенос слагаемых из одной части уравнения в другую со сменой знака слагаемого на противоположный.

Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.

Применение всех формул и свойств, которые есть в математике.

Возведение в нечетную степень обеих частей уравнения.

Извлечение корня нечетной степени из обеих частей уравнения.

Равносильные уравнения и уравнения следствия

Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:

Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.

Пример (ОГЭ). Решите уравнение \(x^2-2x+\sqrt<2-x>=\sqrt<2-x>+3\)

Перенесем оба слагаемых из правой части в левую.

Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.

Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета .

Сверяем корни с ОДЗ и исключаем неподходящие.

\(↑\) не подходит под ОДЗ

Запишем ответ.

Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ .

Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.

Решение:

В пункте a) применялось равносильное преобразование 1.

В пункте b) перешли к уравнению следствию, так как \(\sqrt\) «ушло», то ОДЗ расширилось;

В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;

В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;

В пункте e) умножили обе части уравнения на \(2\) т.е. равносильно преобразовали;

В пункте f) перешли от вида \(a^=a^\) к виду \(f(x) =g(x)\), что тоже является равносильным преобразованием.

Равносильные уравнения, правила преобразований

п.1. Понятие равносильных уравнений

Равносильными называют уравнения, имеющие одни и те же корни.

Равносильными считаются также уравнения, каждое из которых не имеет корней.

Каждое из уравнений имеет один и тот же корень x=1

$\implies$ уравнения равносильны

$x_1 = 3 и x_2 = -2$

Первое уравнение имеет два корня, а второе – только один корень

$\implies$ уравнения неравносильны

Оба уравнения не имеют решений

$\implies$ уравнения равносильны

п.2. Правила преобразования уравнений

При решении уравнения его стараются заменить более простым равносильным уравнением. При этом используют следующие правила.

Правила преобразования уравнений

  • 1. В любой части уравнения можно раскрывать скобки и приводить подобные.
  • 2. Любое слагаемое в уравнении можно перенести из одной части в другую, изменив его знак.
  • 3. Обе части уравнения можно умножать или делить на одно и то же число, отличное от нуля.

В результате этих преобразований всегда получаем уравнение, равносильное данному.

п.3. Примеры

Пример 1. Решите уравнение $ \frac <1><5>x = 12 — 7x$

$ \frac <1><5>x = 12 — 7x \iff \frac <1><5>x + 7x = 12 \iff 7 \frac <1><5>x = 12 \iff x = 12:7 \frac <1> <5>\iff$

$ x = 12 \cdot \frac <5> <36>= \frac <5> <3>=1 \frac <2> <3>$

Пример 2. Решите уравнение $ \frac <3x> <7>— \frac <14>= 10$

$ \frac <3x> <7>— \frac <14>= 10 | \times 14 \iff 6x — x = 140 \iff 5x = 140 \iff x = 140 : 5 = 28$

Пример 3. Решите уравнение $7x — \frac <2> <5>=\frac 15 (3x+14)$

$7x — \frac 25 = \frac 15 (3x + 14) | \times 5 \iff 35x — 2 = 3x + 14 \iff 35x — 3x = 14 + 2 \iff$

$ \iff 32x = 16 \iff x = \frac <16> <32>= \frac 12$

Ответ: x = \frac 12

Пример 4. Решите уравнение $\frac <5x-1> <2>— \frac <3x+4> <8>= \frac <4>$

$\frac <5x-1> <2>— \frac <3x+4> <8>= \frac <4>| \times 8 \iff 4(5x-1)-(3x+4)=2(x-3) \iff $

$ \iff 15x=2 \iff x= \frac <2> <15>$

Пример 5. При каких значениях a равносильны уравнения

Найдём корень первого уравнения

$3(x-1)=5-x \iff 3x-3=5-x \iff 3x+x=5+3 \iff 4x=8 \iff x=2$

Подставим во второе

$a \cdot 2=2+a \iff 2a-a=2 \iff a=2$

При a=2 оба уравнения имеют один корень x=2.

Уравнения

Решение уравнений онлайн

Если вы это читаете, значит вас интересует вопрос решения уравнений.

Да, наши калькуляторы могут решить все уравнения, которые встречаются в школьном курсе и не только. Но нужно понимать, что большинство уравнений имеют несколько способов решения, а калькулятор выдает лишь только какое-то одно.

Бесспорно все способы решения хороши по-своему, но каждому методу отводится свое место в программе обучения.

Поэтому не стоит злоупотреблять калькуляторами, если ваш школьный учитель или личный репетитор требует решить уравнение одним способом, а вы предоставляете ему альтернативное решение.

Да, это может быть похвально, но опытный педагог сразу поймет, что решение уравнения не ваше.

Калькулятор решения уравнений

Калькулятор уравнений незаменимый помощник. Именно помощник, а не решатель проблем. Всегда старайтесь своими силами решать уравнения, а калькулятор используйте в качестве проверки вашего ответа.

Для грамотного учителя не столько важен конечный ответ, сколько сам ход решения уравнения.

Как вы могли заметить, при решении некоторых уравнений, например, квадратных, калькулятор может выполнить три разных способа решения. Это разложение уравнения на множители, выделение полного квадрата или найти корни уравнения через дискриминант.

Попытайтесь сначала самостоятельно решить заданное уравнение, вспомните чему вас учили на уроке.

Даже если вы ошибетесь в числах, то ничего страшного, ученик имеет право на ошибку, главное правильно мыслить.

С нашим калькулятором уравнений вы с легкостью исправите допущенную в вычислениях ошибку.


источники:

http://reshator.com/sprav/algebra/7-klass/ravnosilnye-uravneniya-pravila-preobrazovanij/

http://math24.biz/equation