Составьте уравнение равносильное данному x 2

Равносильные уравнения. Равносильные преобразования уравнений

Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.

  • Уравнения \(x+2=7\) и \(2x+1=11\) равносильны, так как каждое из них имеет единственный корень – число \(5\).
  • Равносильны и уравнения \(x^2+1=0\) и \(2x^2+3=1\) — ни одно из них не имеет корней.
  • А вот уравнения \(x-6=0\) и \(x^2=36\) неравносильны, поскольку первое имеет только один корень \(6\), второе имеет два корня: \(6\) и \(-6\).

Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.

Основные равносильные преобразования уравнений:

  1. Перенос слагаемых из одной части уравнения в другую со сменой знака слагаемого на противоположный.

Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.

Применение всех формул и свойств, которые есть в математике.

Возведение в нечетную степень обеих частей уравнения.

Извлечение корня нечетной степени из обеих частей уравнения.

Равносильные уравнения и уравнения следствия

Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:

Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.

Пример (ОГЭ). Решите уравнение \(x^2-2x+\sqrt<2-x>=\sqrt<2-x>+3\)

Перенесем оба слагаемых из правой части в левую.

Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.

Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета .

Сверяем корни с ОДЗ и исключаем неподходящие.

\(↑\) не подходит под ОДЗ

Запишем ответ.

Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ .

Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.

Решение:

В пункте a) применялось равносильное преобразование 1.

В пункте b) перешли к уравнению следствию, так как \(\sqrt\) «ушло», то ОДЗ расширилось;

В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;

В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;

В пункте e) умножили обе части уравнения на \(2\) т.е. равносильно преобразовали;

В пункте f) перешли от вида \(a^=a^\) к виду \(f(x) =g(x)\), что тоже является равносильным преобразованием.

Равносильные уравнения, правила преобразований

п.1. Понятие равносильных уравнений

Равносильными называют уравнения, имеющие одни и те же корни.

Равносильными считаются также уравнения, каждое из которых не имеет корней.

Каждое из уравнений имеет один и тот же корень x=1

$\implies$ уравнения равносильны

$x_1 = 3 и x_2 = -2$

Первое уравнение имеет два корня, а второе – только один корень

$\implies$ уравнения неравносильны

Оба уравнения не имеют решений

$\implies$ уравнения равносильны

п.2. Правила преобразования уравнений

При решении уравнения его стараются заменить более простым равносильным уравнением. При этом используют следующие правила.

Правила преобразования уравнений

  • 1. В любой части уравнения можно раскрывать скобки и приводить подобные.
  • 2. Любое слагаемое в уравнении можно перенести из одной части в другую, изменив его знак.
  • 3. Обе части уравнения можно умножать или делить на одно и то же число, отличное от нуля.

В результате этих преобразований всегда получаем уравнение, равносильное данному.

п.3. Примеры

Пример 1. Решите уравнение $ \frac <1><5>x = 12 — 7x$

$ \frac <1><5>x = 12 — 7x \iff \frac <1><5>x + 7x = 12 \iff 7 \frac <1><5>x = 12 \iff x = 12:7 \frac <1> <5>\iff$

$ x = 12 \cdot \frac <5> <36>= \frac <5> <3>=1 \frac <2> <3>$

Пример 2. Решите уравнение $ \frac <3x> <7>— \frac <14>= 10$

$ \frac <3x> <7>— \frac <14>= 10 | \times 14 \iff 6x — x = 140 \iff 5x = 140 \iff x = 140 : 5 = 28$

Пример 3. Решите уравнение $7x — \frac <2> <5>=\frac 15 (3x+14)$

$7x — \frac 25 = \frac 15 (3x + 14) | \times 5 \iff 35x — 2 = 3x + 14 \iff 35x — 3x = 14 + 2 \iff$

$ \iff 32x = 16 \iff x = \frac <16> <32>= \frac 12$

Ответ: x = \frac 12

Пример 4. Решите уравнение $\frac <5x-1> <2>— \frac <3x+4> <8>= \frac <4>$

$\frac <5x-1> <2>— \frac <3x+4> <8>= \frac <4>| \times 8 \iff 4(5x-1)-(3x+4)=2(x-3) \iff $

$ \iff 15x=2 \iff x= \frac <2> <15>$

Пример 5. При каких значениях a равносильны уравнения

Найдём корень первого уравнения

$3(x-1)=5-x \iff 3x-3=5-x \iff 3x+x=5+3 \iff 4x=8 \iff x=2$

Подставим во второе

$a \cdot 2=2+a \iff 2a-a=2 \iff a=2$

При a=2 оба уравнения имеют один корень x=2.

Составьте уравнение равносильное данному x 2

Равносильными уравнениями называются такие уравнения, которые имеют одни и те же корни, например уравнения х 2 = 3х — 2 и x 2 +2 = 3x равносильны (оба имеют корни х = 1 и х = 2).

Процесс решения уравнений заключается в основном в замене данного уравнения другим, ему равносильным.

Основные приемы, применяемые при решении уравнения, таковы.

1. Замена одного выражения другим, тождественно ему равным. Например, уравнение (x + 1) 2 = 2x + 5
можно заменить равносильным уравнением
x 2 + 2x + 1 = 2x + 5

2. Перенос слагаемых из одной части уравнения в другую с переменой знака на обратный; например, в уравнении х 2 + 2х + 1 = 2х + 5 можно перенести все члены в левую часть, причем члены + 2х и +5 из правой части в левую перейдут со знаком минус. Уравнение х 2 + 2x + 1 — 2x – 5 =0 или, что то же, х 2 — 4 = 0, равносильно исходному.

3. Умножение или деление обеих частей равенства на одно и то же выражение. При этом нужно иметь в виду, что новое уравнение может не быть равносильным предыдущему, если выражение, на которое мы умножаем или делим может быть равным нулю.

Пример. Дано уравнение (х — 1) (х + 2) = 4(x — 1). Разделив обе его части на х — 1, получаем х + 2 = 4. Это уравнение имеет единственный корень х = 2. Исходное же уравнение кроме корня х = 2 имеет еще корень х = 1. При делении на х — 1 этот корень «потерялся». Наоборот, при умножении обеих частей уравнения x + 2 = 4 сверх корня х = +2 появляется новый корень х = 1.

Из этого отнюдь не следует, что не нужно умножать или делить обеих частей уравнения на выражение, могущее равняться нулю. Нужно только каждый раз, когда такое действие производится, учесть, не пропадут ли при этом какие-нибудь старые корни и не появятся ли какие-нибудь новые.

4. Можно также возводить обе части уравнения в одну и ту же степень или извлекать из обеих частей корни одной и той же степени; однако при этом также могут получаться уравнения, не равносильные исходным. Например, уравнение 2х = 6 имеет один корень х = 3; уравнение же (2x 2 ) 2 = 6 2 , т. е. 4x 2 = 36, имеет два корня:
х = 3 и х = — 3.

Перед тем как выполнить преобразование уравнения, нужно посмотреть, не могут ли при этом пропасть некоторые старые его корни или появиться новые. Особенно важно установить, не пропадают ли старые корни; появление новых не так опасно, ибо всегда можно, получив некоторый корень, подставить его, в исходное уравнение и непосредственно, проверить, удовлетворяется ли оно.


источники:

http://reshator.com/sprav/algebra/7-klass/ravnosilnye-uravneniya-pravila-preobrazovanij/

http://www.maths.yfa1.ru/algebra.php?id=18