Совместимость системы линейных уравнений методом крамера

Исследование системы на совместимость и решение методом Крамера. Решение системы линейных алгебраических уравнений методом Гаусса

Страницы работы

Содержание работы

1. Исследовать систему на совместимость и решить методом Крамера.

Т-ма Крамера: крамеровская система имеет единственное решение.

Крамеровская система – это система, удовлетворяющая следующим 2-м условиям:

1) число уравнений системы = числу неизвестных

2) определитель, составленный из коэффициентов при неизвестных, отличен от 0

Система совместима, т.е. имеет хотя бы одно решение.

2. Решить систему линейных алгебраических уравнений методом Гаусса

.

Решение:Выпишем расширенную матрицу системы

Приведем эту матрицу к ступенчатому виду. Для этого мы можем делать элементарные преобразования строк.

Т-ма Кронекери-Копелли: СЛУ совместима , когда ранг матрицы = рангу расширенной матрицы системы.

Ранг матрицы – число ненулевых строк в ступенчатом виде матрицы

С – расширенная матрица системы, А – матрица системы

r(A)=2 r(C)=r(A) и по теореме Кронекери-Копелли система совместима. От ступенчатой матрицы переходим к ступенчатой системе:

Т. к. число уравнений системы 4 на прямую сумму подпространств размерности 2.

R 4 – множество строк длины 4 (4-х мерное арифметическое пространство)

Если А и В – подпространства пространства V, то через А+В обозначают множество

В случае, если А∩В= <Ø>– нулевое подпространство, то такая сумма V=A+B называется прямой и в этом случае пишут V=A. В нашем случае Ø=(0,0,0,0)

Пусть теперь А= <(B=<(0,0,

Проверим, что пространство задаётся в виде А+В

Пусть

а=( в==(0,0,, значит R 4 =A.

Ответ: R 4 =A, где А= <(B=<(0,0,

4. Докажите, что в пространстве M(2, R) система векторов линейно независима.

Система векторов а1234 линейно независима, если в любой системе вида

Ø

В нашем случае, пусть

Значит, система векторов Е1, Е2, Е3, Е4 линейно независима.

5. Найдите жорданову нормальную форму матриц: .

Жорданова нормальная форма матрицы состоит из клеток Жордана вдоль главной диагонали, а все остальные элементы такой матрицы нулевые.

Клетка Жордана – это матрица вида:

Если размер клетки n*n, то она обозначается символом Yn(a).

Пример: Y1(a)=а, Y2(a)=, Y3(a)=

В искомой матрице записывают характеристический многочлен матрицы А и находят его корни.

Характеристический многочлен имеет единственный корень кратности 3.

Надо выяснить, какой из 3-х случае нам подходит:

Y1=, Y2=, Y3=(1)

Число всех клеток Жордана вычисляют по формуле:

A-E =

Значит, . Искомая матрица имеет вид: Y=

Ответ: Y=

6. Исследовать, являются ли векторы

векторного пространства линейно зависимыми.

Пусть

Это приводит к системе:

Т. к. определитель системы ≠ 0, то система имеет единственное нулевое решение. Значит, система векторов f(x), g(x), h(x) являются линейно независимыми.

Ответ: линейно независимы.

7. Найти собственные значения и собственные векторы линейного оператора пространства R 2 , заданного в некотором базисе матрицей

.

Характеристический многочлен имеет единственный корень кратности 2.

Значит, — собственное значение линейного оператора.

Найдем собственный вектор, отвечающий найденному собственному значению:

Пусть х = (х1, х2) х(А-

θ

Пусть х2=t →x1=-t, где t – любое число

Ответ: собственное значение λ = -1, собственный вектор (-t, t), t – любое число.

8. Найти все значения , при которых вектор линейно выражается через векторы

Мы должны найти все λ, для которых уравнение (1)

имеет решение

что приводит к системе:

Уравнение (1) имеет решение ↔, когда данная система имеет решение. А согласно теореме Кронекери-Копелли данная система совместима ↔ ранг матрицы системы совпадает с рангом расширенной матрицы.

Метод Крамера решения систем линейных уравнений

Формулы Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения и возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

. (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

* ,

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

*

** .

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера


………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Применить метод Крамера самостоятельно, а затем посмотреть решения

Пример 4. Решить систему линейных уравнений:

.

Пример 5. Решить систему линейных уравнений методом Крамера:

.

К началу страницы

Пройти тест по теме Системы линейных уравнений

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

,

,

,

.

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Онлайн калькулятор. Решение систем линейных уравнений методом Крамера

Используя этот онлайн калькулятор для решения систем линейных уравнений (СЛУ) методом Крамера, вы сможете очень просто и быстро найти решение системы.

Воспользовавшись онлайн калькулятором для решения систем линейных уравнений методом Крамера, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на решения систем линейных уравнений, а также закрепить пройденный материал.

Решить систему линейных уравнений методом Крамера

Изменить названия переменных в системе

Заполните систему линейных уравнений:

Ввод данных в калькулятор для решения систем линейных уравнений методом Крамера

  • В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
  • Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа.
  • Если в уравнение отсутствует какая-то переменная, то в соответствующем поле ввода калькулятора введите ноль.
  • Если в уравнение перед переменной отсутствуют числа, то в соответствующем поле ввода калькулятора введите единицу.

Например, линейное уравнение x 1 — 7 x 2 — x 4 = 2

будет вводится в калькулятор следующим образом:

Дополнительные возможности калькулятора для решения систем линейных уравнений методом Крамера

  • Между полями для ввода можно перемещаться нажимая клавиши «влево», «вправо», «вверх» и «вниз» на клавиатуре.
  • Вместо x 1, x 2, . вы можете ввести свои названия переменных.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.


источники:

http://function-x.ru/systems_kramer.html

http://ru.onlinemschool.com/math/assistance/equation/kramer/