Список литературы уравнения и системы

Курсовая работа на тему Методика изучения показательных уравнений неравенств

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

ГЛАВА I . ТЕОРИТИЧЕСКИЕ АСПЕКТЫ ИЗУЧЕНИЯ ПОКАЗАТЕЛЬНЫХ УРАВНЕНИЙ ……………………………………………………………………. 5

1.1 Анализ учебников по алгебре и началам анализа по теме «Показательные уравнения и неравенства» …………………………………………………………

1.2 Показательные уравнения и методы их решения …….…………………….8

ГЛАВА II . МЕТОДИКА ИЗУЧЕНИЯ ПОКАЗАТЕЛЬНЫХ УРАВНЕНИЙ, НЕРАВЕНСТВ И ИХ СИСТЕМ . ……………………..…………..15

2.1 Анализ заданий на решение показательных уравнений и неравенств в составе ЕГЭ……..………………………………………………………. ……. 15

2.2 Методические особенности изучения показательных уравнений и неравенств…. ……………………………………………………….…………..18

Актуальность работы . В школьном курсе математики важное место отводится решению показательных уравнений и неравенств и системам, содержащие показательные уравнения. Впервые ученики встречаются с показательными уравнениями и неравенствами в 10 классе после того, как познакомятся с показательной функцией и ее свойствами, а системы, содержащие показательные уравнения и неравенства в 11 классе. Показательные уравнения, неравенства, системы, содержащие показательные уравнения, встречаются в заданиях ЕГЭ. Поэтому изучению методов их решения должно быть уделено значительное внимание, т.к. в заданиях ЕГЭ системы, содержащие показательные уравнения и неравенства могут быть и комбинированными. И для того, чтобы решить правильно систему уравнений или неравенств, нужно правильно решить показательное уравнение или неравенство.

При решении показательных уравнений и неравенств часто возникают трудности, связанные со следующими особенностями:

— незнание четкого алгоритма решения показательных уравнений, неравенств и их систем;

— при решении показательных уравнений и неравенств, ученики производят преобразования, которые не равносильны исходным уравнениям и неравенствам;

— при решении показательного уравнения и неравенства введением новой переменной забывают возвращаться к обратной замене.

Объектом является процесс обучения математике в старшей школе.

Предметом являются методические особенности изучения показательных уравнений, неравенств и их систем в старших классах средней школы.

Цель данной работы: изучить теоретический материал по теме, проанализировать данную тему в учебниках по алгебре и началам анализа, систематизировать задания ЕГЭ на решение показательных уравнений и неравенств, систематизировать и обобщить методические рекомендации по решению показательных уравнений и неравенств.

Для достижения поставленной цели необходимо решить следующие задачи:

· изучить требования государственных стандартов по теме «Показательные уравнения и неравенства»;

· проанализировать материал по теме в учебниках алгебры и начал анализа;

· систематизировать методы решения показательных уравнений и неравенств;

· систематизировать и обобщить методические особенности изучения данной темы.

В процессе работы используются следующие методы исследования: изучение и анализ теоретических и методологических источников по теме исследования, качественный и количественный анализ данных.

Структура: работа состоит из введения, двух глав, заключения и списка литературы. Работа составляет 31 страницы.

ГЛАВА I . ТЕОРИТИЧЕСКИЕ АСПЕКТЫ ИЗУЧЕНИЯ ПОКАЗАТЕЛЬНЫХ УРАВНЕНИЙ

1.1 Анализ учебников по алгебре и началам анализа по теме «Показательные уравнения и неравенства»

В данном параграфе мы проведем анализ школьных учебников алгебра и начал анализа для того, чтобы узнать в каком классе изучают показательные уравнения и как преподносится эта тема в каждых из учебников. Для сравнения возьмем 3 учебника алгебры для старших классов общеобразовательной школы.

— А.Г. Мордкович, Алгебра и начала анализа 10-11 классы, учебник для общеобразовательных учреждений;

— А.Н. Колмогоров, Алгебра и начала математического анализа, учебник для 10-11 классов общеобразовательных учреждений;

— Ш.В. Алимов, Алгебра и начала математического анализа 10-11 классы, учебник для общеобразовательных учреждений.

Впервые тему «Показательные уравнения неравенства» изучают в 10 классе. Проанализировав учебники, мы можем узнать в чем сходство и различие теоретического материала, заданий.

Учебник алгебры А.Г. Мордковича дает цельное и полное представление о школьном курсе алгебры и начала анализа, отвечает требованиям обязательного минимума содержания образования. Изложение теоретического материала ведется очень подробно. Построение курса алгебры осуществляется на основе приоритетной функциональной линии.

Прежде чем познакомить нас с методами решения показательных уравнений и неравенств автор знакомит нас с такими понятиями как, корень n -ой степени числа и его свойства. Далее мы знакомимся с функцией y , ее графиком и свойствами. После мы изучаем логарифмическую функцию, ее свойства. И уже потом переходим к показательной функции и затем, к решению показательных уравнений и неравенств.

Сначала вводится понятие показательного уравнения, как

показательным называют уравнения вида: , где

положительное число, отличное от 1, и уравнения сводящиеся к нему. Далее приведена теорема о решении показательного уравнения с одинаковыми основаниями. В учебнике предложены методы решения показательных уравнений: метод уравнивания показателей, функционально-графический метод и метод введения новой переменной.

В каждом параграфе представлено большое количества заданий. Упражнения сконцентрированы по двум блокам. Первый блок содержит задания базового и среднего уровня сложности, второй блок включает задания среднего и повышенного уровня.

По данной теме предлагаются задания:

· решить систему уравнений;

Следует отметить, что учебник «Алгебры и начала анализа10-11 классы» используется в обычном классе. Для профильных классов есть другой учебник этого автора.

Учебник «Алгебры и начала анализа» А.Н. Колмогорова является самым распространенным учебником алгебры в 10-11 классах.

Теоретический материал иллюстрируется большим количеством примеров. Задания для учащихся делаться на две части. Первая часть заданий обязательный минимум для учеников, который они должны уметь решать. В следующей части задания чуть сложнее. Также в конце каждой темы можно увидеть задания и вопросы на повторение, что помогает к подготовки к контрольной работе.

В учебники хорошо изложен дополнительный материал, интересные факты, биография ученных, происхождение терминов. Это позволяет развить интерес к предмету и окружающему миру.

Содержание учебника Колмогорова мы сначала изучаем главу функции, в которой изучаем показательную функцию. Затем в следующей главе, переходим к решению показательных уравнений и неравенств. Однако, четкого определения показательного уравнения и неравенства в учебнике нет.

В учебнике представлены следующие задания:

— решите систему уравнений;

Учебник «Алгебра и начала математического анализа» Ш.В. Алимова пользуется меньшей популярностью среди учебников алгебры. Изложение учебника уже близко подходит к математическому анализу. В учебнике очень много разобранных примеров, графических иллюстраций к решению задач.

Задания, предоставляемые в параграфе, разделены на два уровня: средний и высокий. В конце учебника к каждому параграфу есть дополнительные задачи, которые помогают подготовиться к контрольной работе.

Прежде чем перейти к решению показательных уравнений и неравенств автор предлагает сначала познакомиться с показательной функцией, ее графиком и свойствами. В учебнике представлены методы: метод уравнивания показателей, вынесения общего множителя за скобки, метод введения новой переменной. При решении показательных неравенств, также автор предлагает обратить внимание на возрастание и убывание функции. В учебнике предлагается пример решения показательного неравенства графическим методом. После изучения методов решения показательных уравнений и неравенств, сразу дается решение систем, содержащих показательные уравнения и неравенств.

Задания, представленные в учебнике:

— доказать, что уравнение имеет один корень при фиксированном значении ;

— решить графически уравнения;

— найти целые значения неравенства на отрезке;

— решить графически неравенства;

Проанализировав учебники, можно сделать вывод о том, что во всех трех учебниках почти одинаковый порядок изучения темы, но методы решения показательных уравнений представлены по-разному. Теоретическое изложение этой темы, задания представленные в учебнике алгебры и начал анализа изложены лучше под редакцией А.Г. Мордковича.

1.2 Показательные уравнения и методы их решения

Показательным уравнением называется уравнение, содержащее переменную в показателе степени. Например:

Простейшим показательным уравнением называется уравнение вида: .

Пример показательных уравнений:

1.

2.

3.

При решении показательных уравнений необходимо помнить, что решение любого показательного уравнения сводиться к решению простейших показательных уравнений.

Методы решения показательных уравнений:

· Ме т од уравнивания показателей;

· Метод введения новой переменной;

· метод вынесения общего множителя за скобки;

· метод почленного деления ;

Метод уравнивания показателей

Алгоритм решения уравнения методом уравнивания показателей:

· представить обе части показательного уравнения в виде степеней с одинаковыми основаниями;

· на основании теоремы, если где , равносильно уравнению вида ,приравниваем показатели степеней;

· решаем полученное уравнение, согласно его виду(линейное, квадратное и т.д.);

· записываем ответ. [ 1 c.105]

Пример 1. Решить уравнение:

Решение. Представим 27 как . Наше показательное уравнение имеет одинаковое основание 3: . Данное уравнение равносильно уравнению .

Ответ: .

Пример 2. Решить уравнение:

Решение. Упростим показательное уравнение , т.к. в показательном уравнении основания одинаковы, следует, что оно равносильно уравнению: . Решаем это линейное уравнение и получаем: .

Ответ: .

Метод введения новой переменно

Способ подстановки применяется в более сложных примерах. Он заключается в следующем. Показательное уравнение можно решить, введя новое обозначение. После подстановки в исходное уравнение нового обозначения получим новое, более простое уравнение, решив которое, возвращаемся к подстановке и находим корни исходного уравнения.

Алгоритм решения показательного уравнения методом введения новой переменной:

· определить возможность переписать данное уравнение в новом виде, позволяющем ввести новую переменную;

· решаем уравнение относительно новой переменной;

· записываем ответ. [1 c.109]

Пример1. Решить уравнение:

Решение. Упростим показательное уравнение . Применим метод введения новой переменной, пусть . Данное уравнение можно записать в виде . Решая это квадратное уравнение, получаем . Теперь задача сводится к решению совокупности уравнений

Ответ:

Метод вынесения общего множителя за скобки

Вынесение множителя за скобки применяется для разложения многочлена на множители. Для этого нужно сначала каждое слагаемое многочлена заменить произведением двух множителей. Например, в многочлене у каждого слагаемого есть общий множитель . Поэтому этот многочлен можно представить так: .

Теперь это выражение можно представить в виде произведения двух множителей, один из которых общий множитель , а второй — сумма , которая заключается в скобки: .

Таким образом, общий множитель был вынесен за скобки и в результате этого тождественного преобразования первоначальное выражение представлено в виде другого, тождественного ему: .

Вынесение общего множителя за скобки применяется, например, при тождественных преобразованиях дробей (сокращение дробей, приведение к общему знаменателю), при решении уравнений и в других задачах. [3 c .170]

Решение показательных уравнений методом вынесения общего множителя за скобки

Пример1. Решить уравнение: .

Решение: , т.к. равносильно , запишем как . Вынесем за скобку: . Отсюда

. Представим 27 как .Тогда получимуравнение . Следовательно, .

Ответ: .

Метод основан на использовании графических иллюстраций или каких-либо свойств функций.

В одной системе координат строим графики функций, записанные в левой и в правой частях уравнения, затем находим точку (точки) их пересечения. Абсцисса найденной точки является решением уравнения.

· левую и правую части уравнения представить в виде функций;

· построить графики обеих функций в одной системе координат;

· найти точки пересечения графиков, если они есть;

· указать абсциссы точек пересечения, это корни уравнения[3 c . 118]

Пример 1. Решить уравнение: .

Реферат: Способы решения систем линейных уравнений

– очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. Поэтому первая глава моего реферата посвящена теме матриц и определителей. В ней я рассматривала различные действия над матрицами, свойства определителей, метод Гаусса вычисления ранга матрицы, а так же некоторые другие теоретические вопросы. Во второй главе непосредственно рассматриваются системы линейных уравнений и некоторые методы их решения: правило Крамера, метод Гаусса, а так же теорема Кронекера – Капелли. И в той и в другой главах приведены примеры, которые составляют практическую часть моего реферата.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, определителей и систем линейных уравнений; изучить современное состояние данного вопроса; отобрать и классифицировать исследуемый материал; а также провести практическую часть работы. Давайте рассмотрим некоторые примеры важнейших моментов этой работы.

Пусть дана система n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ;

a n1 x 1 + a n2 x 2 + …+ a nn x n = b n ;

a). Если  , то система (1) имеет единственное решение,

которое может быть найдено по формулам Крамера: x 1 = , где

определитель n-го порядка  i ( i=1,2. n) получается из определителя системы путем замены i-го столбца свободными членами b 1 , b 2 . b n .

б). Если  , то система (1) либо имеет бесконечное множество решений , либо несовместна ,т.е. решений нет . Например:

решить систему уравнений

.

Вычислим определитель системы:

Так как определитель не равен нулю, система уравнений может быть решена по формулам Крамера. Найдем определители ∆x , ∆y:

.

Практическое значение правила Крамера для решения системы n линейных уравнений с п неизвестными невелико, так как при его применении приходится вычислять п +1 определителей n -го порядка:  ,  x 1 ,  x 2 , …,  x n . Более удобным является так называемый метод Гаусса. Он применим и в более общем случае системы линейных уравнений, т. е. когда число уравнений не совпадает с числом неизвестных.

Итак, пусть дана система, содержащая m линейных уравнений с п неизвестными:

а 11 х 1 + а 12 х 2 + …+ а 1 n х n = b 1 ;

а 21 х 1 + а 22 х 2 + …+ а 2 n х n = b 2 ;

а m1 х 1 + а m2 х 2 + …+ а m n х n = b m

Метод Гаусса решения системы (19) заключается в последовательном исключении переменных. Например:

Решить методом Гаусса систему уравнений

x 1 – 2 x 2 + x 3 + x 4 = –1;

3 x 1 + 2 x 2 – 3 x 3 – 4 x 4 = 2;

2 x 1 – x 2 + 2 x 3 – 3 x 4 = 9;

x 1 + 3 x 2 – 3 x 3 – x 4 = –1.

Р е ш е н и е. Составим матрицу В и преобразуем ее. Для удобства вычислений отделим вертикальной чертой столбец, состоящий из свободных членов:

1 –2 1 1 –1

Умножим первую строку матрицы В последовательно на 3, 2 и 1 и вычтем соответственно из второй, третьей и четвертой строк. Получим матрицу, эквивалентную исходной:

1 –2 1 1 –1

Третью строку матрицы умножим на 3 и вычтем ее из второй строки. Затем новую вторую строку умножим на 3 и на 5 и вычтем из третьей и четвертой строк. Получим матрицу, эквивалентную исходной:

1 –2 1 1 –1

Из коэффициентов последней матрицы составим систему, равносильную исходной:

x 1 – 2 x 2 + x 3 + x 4 = –1;

X 2 – 6 x 3 + 8 x 4 = –28;

Решим полученную систему методом подстановки, двигаясь последовательно от последнего уравнения к первому. Из четвертого уравнения x 4 = –1 , из третьего х 3 = 3 . Подставив значения х 3 и x 4 во второе уравнение, найдем x 2 = 2 . Подставив значения x 2 , x 3 , x 4 в первое уравнение, найдем x 1 = 1.

Теорема совместности Кронекера – Капелли звучит следующим образом: Для того, чтобы система неоднородных линейных уравнений была совместной, необходимо и достаточно, чтобы ранг расширенной матрицы системы был равен рангу её основной матрицы. Рассмотрим следующий пример:

5 x 1 – x 2 + 2 x 3 + x 4 = 7;

2 x 1 + x 2 – 4 x 3 – 2 x 4 = 1;

x 1 – 3 x 2 + 6 x 3 – 5 x 4 = 0.

Ранг основной матрицы этой системы равен 2, так как сцществует отличный от нуля минор второго порядка этой матрицы, например

5 –1 = 7,

а все миноры третьего порядка равны нулю.

Ранг расширенной матрицы этой системы равен 3, так как существует отличный от нуля минор третьего порядка этой матрицы, например

5 –1 7

Согласно критерию Кронекера – Капелли система несовместна, т.е. не имеет решений.

В процессе работы я узнала много нового: какие действия можно выполнять над матрицами, какой путь решения систем линейных уравнений наиболее простой и быстрый, а так же многие другие теоретические вопросы и провела практические исследования, приводя примеры в тексте.

Тема решения систем линейных уравнений предлагается на вступительных экзаменах в различные математические вузы, на выпускных экзаменах, поэтому умение их решать очень важно.

Реферат может использоваться как учащимися, так и преподавателями в процессе факультативных занятий, как пособие для самостоятельного изучения по теме „Способы решения систем линейных уравнений ”, а также в качестве дополнительного материала.

МОУ Гимназия № 11

Способы решения систем линейных уравнений

МОУ Гимназия № 11

Способы решения систем линейных уравнений

Реферат по математике

Ученица 9 2 класса

Введение. 2

Глава I. Матрицы и действия над ними. 5

1.1. Основные понятия. –

1.2. Действия над матрицами. 8

1.3. Обратная матрица. 11

1.4. Ранг матрицы. 16

Глава II. Системы линейных уравнений. 23

2.1. Основные понятия. –

2.2. Система n линейных уравнений с n неизвестными. Правило

2.3. Однородная система n линейных уравнений с n

2.4. Метод Гаусса решения общей системы линейных

2.5. Критерий совместности общей системы линейных

Список литературы. 46

Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений , т.е. системы m уравнений 1ой степени с n неизвестными:

a 11 x 1 + … + a 1n x n = b 1 ;

a 21 x 1 + … + a 2n x n = b 2 ;

a m1 x 1 + … + a mn x n = b m .

Здесь x 1 , … , x n – неизвестные, а коэффициенты записаны так, что индексы при них указывают на номер уравнения и номер неизвестного. Значение систем 1ой степени определяется не только тем, что они простейшие. На практике часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Ещё Г.Лейбниц (1693) обратил внимание на то, что при изучении систем линейных уравнений наиболее существенной является таблица, состоящая из коэффициентов, и показал, как из этих коэффициентов (в случае m = n ) строить так называемые определители , при помощи которых исследуются системы линейных уравнений. Впоследствии такие матрицы, или матрицы , стали предметом самостоятельного изучения, так как обнаружилось, что их роль не исчерпывается приложениями к теории систем линейных уравнений. Современная алгебра, понимаемая как учение об операциях над любыми математическими объектами, является одним из разделов математики, формирующих общие понятия и методы для всей математики. Для современной алгебры характерно то, что в центре внимания оказываются свойства операций, а не объектов, над которыми проводятся данные операции. Классическим разделом алгебры является линейная алгебра , т.е. теория

векторных пространств и модулей, частью которых являются сформировавшиеся ещё в XIX веке теория линейных уравнений и теория матриц. Идеи и методы линейной алгебры применяются во многих разделах математики. Так, основным предметом изучения функционального анализа являются бесконечномерные векторные пространства.

Г.Крамером в 1750 году было установлено правило, применимое к любой системе n линейных уравнений c n неизвестными. Оно носит название правила Крамера . Построение полной теории произвольных систем линейных уравнений было закончено только спустя 100 лет Л.Кронекером.

Применение правила Крамера при практическом решении большого числа линейных уравнений может встретить различные трудности, так как нахождение определителей высокого порядка связано с весьма большими вычислениями. Поэтому были разработаны методы численного (приближённого) решения систем линейных уравнений, наиболее известным из которых является метод Гаусса . Система линейных уравнений может иметь как одно единственное решение ( определённая система ), так и несколько (и даже бесконечное множество) решений ( неопределённая система ); может также оказаться, что система линейных уравнений не имеет ни одного решения ( несовместная система ). Вопрос о совместности системы линейных уравнений, т.е. вопрос о существовании решения системы линейных уравнений, решается сравнением ранга матриц [ а ij ] и [ a ij , b j ]. Если ранги совпадают, то система совместна; если ранг матрицы В строго больше ранга матрицы А , то система несовместна ( теорема Кронекера-Капелли ).

Несколько уравнений вида a 1 x 1 + …+ a n x n = b образуют систему линейных уравнений

a j1 x 1 + …+ a jn x n = b j , j = 1, …, m,

которую можно записать как

x 1 a 1 + …+ x n a n = b,

где а 1 , …, а n , b m -мерные векторы, являющиеся столбцами расширенной матрицы В системы. Отсюда следует, что различные линейные уравнения в функциональных пространствах, линейные дифференциальные уравнения, линейные интегральные уравнения

являются бесконечномерными аналогами обычных систем линейных уравнений.

Способы решения систем линейных уравнений – очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. В процессе знакомства с данной работой приобретаются навыки, с помощью которых в последующем решение систем линейных уравнений станет намного проще, понятнее и быстрее.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, определителей и систем линейных уравнений; изучить современное состояние данного вопроса; отобрать и классифицировать исследуемый материал; а также провести практическую часть работы.

Глава I. Матрицы и действия над ними.

Матрица размерами m Ч n – совокупность mn чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов, например (обозначим за А )

А = 3 10 7 — матрица.

Числа, из которых состоит матрица, называются элементами матрицы. В общем виде матрицы:

а 11 a 12 … a 1n

a 21 a 22 … a 2n

M = a 31 a 32 … a 3n

a m1 a m2 … a mn

они обозначаются буквами с двумя индексами: 1ый индекс указывает номер строки, а 2ой – номер столбца, в которых содержится этот элемент.

Если m = n , то матрица называется квадратной , а число строк (или столбцов) – её порядком .

Две матрицы, имеющие одинаковое количество строк и столбцов, называются матрицами одинакового типа. Две матрицы А = [ a ij ] и В = [ b ij ] одинакового типа называются равными , если a ij = b ij при всех i и j .

Матрица, состоящая из одной строки (одного столбца), называется матрицей-строкой ( матрицей-столбцом ), а матрица, у которой все элементы а ij = 0 , – нулевой или нуль матрицей.

Элементы квадратной матрицы, имеющие одинаковые значения индексов, составляют главную диагональ , а элементы квадратной

матрицы порядка n ,сумма индексов каждого из которых равна n+1 , –

Сумма элементов главной диагонали квадратной матрицы называется следом матрицы. Квадратные матрицы, у которых все элементы вне главной диагонали равны нулю, называются диагональными (обозначается Е ):

1 0 … 0

Е = 0 1 … 0

Квадратная матрица, все элементы которой, стоящие ниже (выше) главной диагонали, равны нулю, называется треугольной :

a 11 а 12 … а 1n b 11 0 … 0

А = 0 а 22 … а 2n ; B = b 21 b 22 … 0

0 0 … a nn b n1 b n2 … b nn

Диагональная матрица является частным случаем треугольной. Преобразование элементов квадратной матрицы, состоящее в замене строк соответствующими столбцами, называется транспонированием матрицы. Таким образом, если

a 11 a 12 … a 1n

A = a 21 a 22 … a 2n ;

a n1 a n2 … a nn

a 11 a 21 … a n1

A T = a 12 a 22 … a n2 .

a 1n a 2n … a nn

Определитель n -го порядка матрицы

а 11 а 12 … а 1n

А = а 21 а 22 … а 2n

а n1 а n2 … а nn

а 11 а 12 … а 1n

∆ = а 21 а 22 … а 2n = ∑ (-1) I(k , k , …, k ) a 1k a 2k … a nk

а n1 а n2 … а nn

Здесь суммирование распространяется на всевозможные перестановки индексов элементов а ij , т.е. на всевозможные перестановки ( k 1 , k 2 , …, k n ). Числа а ij называют элементами определителя .

Квадратная матрица, определитель которой отличен от нуля, называется невырожденной, а матрица с определителем, равным нулю – вырожденной .

Определитель обладает некоторыми свойствами. Перечислим их:

При транспонировании матрицы её определитель не изменяется.

2. Если все элементы некоторой строки определителя состоят из

нулей, определитель равен нулю.

3.От перестановки двух строк определитель меняет знак.

Определитель, содержащий две одинаковые строки, равен нулю.

Общий множитель всех элементов некоторой строки определителя можно вынести за знак определителя, или, если все элементы некоторой строки определителя умножить на одно и тоже число, то определитель умножается на это число.

Определитель, содержащий две пропорциональные строки, равен нулю.

Если все элементы i -й строки определителя представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, у которых все строки, кроме i -й, те же, что и у данного определителя; i -я строка определителя состоит из первых слагаемых элементов i -й строки данного определителя, а i -я

строка другого – из вторых слагаемых элементов i -й строки.

Определитель не изменяется, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и тоже число.

1.2. Действия над матрицами.

Основные операции, которые производятся над матрицами, – сложение, вычитание, умножение, а также умножение матрицы на число. Указанные операции являются основными операциями алгебры матриц – теории, играющей весьма важную роль в различных разделах математики и естествознания.

Суммой двух матриц А и В одинаковых размеров называется матрица того же размера, элементы которой равны сумме соответствующих элементов матриц А и В . Таким образом, если

а 11 … а 1n b 11 … b 1n

А = ………….. ; (1) В = …………… , то (2)

a m1 … а mn b m1 … b mn

a 11 + b 11 … a 1n + b 1n

a m1 + b m1 … a mn + b mn

Операция нахождения суммы матриц называется сложением матриц и распространяется на случай конечного числа матриц одинаковы размеров.

Так же, как и сумма, определяется разность двух матриц

a 11 – b 11 … a 1n – b 1n

A – B = ………………………

a m1 – b m1 … a mn – b mn

Операция нахождения разности двух матриц называется вычитанием матриц . Проверкой можно убедиться, что операция сложения матриц удовлетворяет следующим свойствам:

А + В = В + А ; (коммутативность)

А + (В + С) = (А + В) + С ; (ассоциативность)

Здесь А, В, С – произвольные матрицы одинаковых размеров; О – нулевая матрица того же размера.

Произведением матрицы А = [а ij ] на число λ называется матрица, элементы которой получаются из соответствующих элементов матрицы А умножением их на число λ. Произведение обозначим

λА. Таким образом от умножения матрицы (1) на число, получим:

a 11 … a 1n λa 11 … λa 1n

a m1 … a mn λa m1 … λa mn

Операция нахождения произведения матрицы на число называется умножением матрицы на число. Матрица –А = –1А называется противоположной матрице А . Проверкой можно убедиться, что операция умножения матрицы на число удовлетворяет следующим свойствам:

Здесь А, В – произвольные матрицы; μ, λ — произвольные числа; О – нулевая матрица.

Произведение АВ матрицы А на матрицу В определяется только в том случае, когда число столбцов матрицы А равно числу строк матрицы В . Пусть матрицы А и В такие, что число столбцов матрицы А равно числу строк матрицы В :

а 11 … а 1 n b 11 … b 1n

a m1 … a mn b m1 … b mn

В этом случае произведением матрицы А на матрицу В , которые

заданы в определенном порядке ( А – 1ая, В – 2ая ), является матрица С , элемент которой с ij определяется по следующему правилу:

c ij = a i1 b 1j + a i2 b 2j + … + a in b nj = ∑ n α = 1 a iα b αj,

где i = 1,2, …, m ; j = 1, 2, …, k.

Для получения элемента с ij матрицы произведения С = АВ нужно элементы i -й строки матрицы А умножить на соответствующие элементы j -го столбца матрицы В и полученные произведения сложить. Например, если:

1 2 3 7 8

А = ; В = 9 10 , то (1)

4 5 6 11 12

1 7 + 2 9 + 3 11 1 8 + 2 10 + 3 12 58 64

АВ = = (2)

4 7 + 5 9 + 6 11 4 8 + 5 10 + 6 12 139 154

Число строк матрицы С = АВ равно числу строк матрицы А , а число столбцов – числу столбцов матрицы В .

Операция нахождения произведения двух матриц называется умножением матриц . Умножение матриц некоммутативно, т.е.

АВ ≠ ВА . Убедимся в примере матриц (1). Перемножив их в обратном порядке, получим:

39 54 69

Сравнив правые части выражений (2) и (3), убедимся, что АВ ≠ ВА.

Матрицы А и В , для которых АВ = ВА, называются перестановочными . Например:

1 2 -3 2

А = ; В = перестановочны, т.к.

-2 0 -2 -4

-7 -6

Проверкой можно показать, что умножение матриц удовлетворяет следующим свойствам:

А(ВС) = (АВ)С ; (ассоциативность)

А(В + С) = АВ + АС . (дистрибутивность)

Здесь А, В, С – матрицы соответствующих определению умножения матриц размеров; λ — произвольное число.

Операция умножения двух прямоугольных матриц распространяется на случай, когда число столбцов в 1ом множителе равно числу строк во 2ом, в остальных случаях произведение не определяется. А также, если матрицы А и В – квадратные одного и того же порядка, то умножение матриц всегда выполнимо при любом порядке следования сомножителей.

Пусть дана квадратная матрица

a 11 … a 1n

= A – её определитель.

Если существует матрица Х такая, что АХ = ХА = Е, где Е – единичная матрица, то матрица Х называется обратной по отношению к матрице А , а сама матрица А – обратимой . Обратная матрица для А обозначается А -1 .

Теорема 1.1. Для каждой обратимой матрицы существует только одна обратная ей матрица.

Д о к а з а т е л ь с т в о. Пусть для матрицы А наряду с матрицей Х существует еще хотя бы одна отличная от Х обратная матрица, которую обозначим за Х 1 . Тогда должны выполняться следующие условия: ХА = Е, АХ 1 = Е . Умножив второе равенство на матрицу Х , получим ХАХ 1 = ХЕ =Х. Но, т.к. ХА = Е , то предыдущее равенство можно записать в виде ЕХ 1 = Х или Х = Х 1 .

Т е о р е м а д о к а з а н а.

Найдем теперь выражение для матрицы А -1 при условии, что матрица

А – обратимая. Пусть дана обратимая квадратная матрица А с элементами а ij . Обозначим через А ij алгебраическое дополнение элемента а ij в определителе ∆ матрицы А и составим матрицу В :

А 11 A 21 … A n1

A 1n A 2n … A nn

Заметим, что в i -й строке матрицы В расположены алгебраические дополнения элементов j -го столбца определителя ∆ . Матрица (4) называется присоединённой для матрицы А . Докажем, что матрицы А и В удовлетворяют матричному равенству

Для этого вычислим элемент, стоящий в i -й строке и j -м столбце произведения АВ . Искомый элемент равен сумме произведений элементов i -й строки матрицы А на соответствующие элементы j -го столбца матрицы В:

a i1 A j1 + a i2 A j2 + … + a in A jn . (6)

Согласно правилу разложения определителя по элементам строки (или столбца) выражение (6) равно определителю ∆ при i = j и нулю при i ≠ j . Следовательно, мы установили, что произведение АВ есть матрица вида

∆ 0 … 0 1 0 … 0

Таким образом, АВ = ∆Е. Аналогично доказывается и равенство

Пусть теперь А – невырожденная матрица (т.е. ∆ ≠ 0 ). Тогда, умножив обе части равенства (5) на числовой множитель 1/∆ , получим

Сравнивая равенства (5) и (7) и учитывая единственность обратной

матрицы, замечаем, что

Таким образом, доказано, что, во-первых, обратимы только невырожденные матрицы, и, во-вторых, для матрицы А обратной является матрица

Пусть А невырожденная матрица, тогда АА -1 = Е. Переходя в этом равенстве к определителям, получаем А А -1 = 1 , откуда

А -1 = А -1 .

Таким образом, определитель обратной матрицы равен обратной величине определителя данной матрицы. Из этого следует, что если матрица А – невырожденная, то обратная матрица А -1 также невырожденная.

Пусть теперь дана матрица А -1 . Для неё обратной будет матрица

(А -1 ) -1 .Поэтому из определения обратной матрицы будем иметь

А -1 (А -1 ) -1 = Е . Умножив это соотношение слева на А , получим

АА -1 (А -1 ) -1 = АЕ или (А -1 ) -1 = А.

Пример 1. Найти матрицу обратную матрице

Р е ш е н и е. Проверим, обратима матрица А или нет, т.е. является ли она невырожденной:

1 2 3 1 2 5

∆ А = –3 –1 1 = –3 –1 0 = 5 –3 1 = 5 (–3 + 2) = –5 ≠ 0.

2 1 –1 2 1 0 2 1

Найдем алгебраические дополнения всех элементов матрицы А :

А 11 = –1 1 = 0; А 12 = –­­ –3 1 = –1;

А 13 = –3 –1 = –1; А 21 = – 2 3 = 5;

А 22 = 1 3 = –7; А 23 = – 1 2 = 3;

А 31 = 2 3 = 5; А 32 = 1 3 = –10;

–1 1 –3 1

А 33 = 1 2 = 5.

Составим присоединённую матрицу для матрицы А :

Отсюда находим обратную матрицу:

Пример 2. Найти неизвестную матрицу Х из уравнения АХ = В , если:

Р е ш е н и е. Умножив обе части данного матричного уравнения слева на матрицу А -1 , получим:

А -1 АХ = А -1 В; Х = А -1 В.

Найдем А -1 : ∆ А = 1, А 11 = 2, А 12 = -1, А 21 = -3, А 22 = 1 , следовательно,

Найдем матрицу Х:

Х = А -1 В = 2 -3 3 4 = 9 5 .

1.4. Ранг матрицы.

Рассмотрим произвольную прямоугольную матрицу

а 11 … а 1 n

Выделим некоторое число k строк этой матрицы и такое же число столбцов. Элементы матрицы (8), стоящие на пересечение выделенных строк и столбцов, образуют квадратную матрицу k -го порядка. Определитель этой матрицы называется минором k -го порядка матрицы А . Если не все числа а ij матрицы А равны нулю, то всегда можно указать число r такое, что у матрицы А имеется минор,

имеющий порядок r + 1 и выше, равен нулю.

Число r , представляющее собой наибольший из порядков отличных от нуля миноров матрицы А , называется рангом матрицы и обозначается rangA . Если все элементы а ij равны нулю, то ранг матрицы принимается равным нулю. Отличный от нуля минор r -го порядка матрицы A (таких миноров у матрицы А может быть несколько, но все они имеют один и тот же порядок r ) называется базисным минором матрицы А. Строки и столбцы, из которых построен базисный минор, называют базисными . Понятие ранга матрицы широко применяется в различных приложениях теории матриц.

Выделим в матрице А произвольно k строк. Пусть это будут строки

а α 1 1 , а α 1 2 , … , а α 1 n ;

а α 2 1 , а α 2 2 , … , а α 2 n ;

а α k 1 , а α k 2 , … , а α k n .

Если существуют такие числа λ 1 , λ 2 , …, λ k , не все равные нулю, что для элементов некоторой другой, отличной от выделенной, строки i выполняются следующие соотношения:

то говорят, что i -я строка линейно выражается через строки

α 1 , α 2 , …, α k . В случае, если равенства (9) выполняются тогда и только тогда, когда все числа λ 1 , λ 2 , …, λ k – нули, то говорят, что i -я строка линейно зависима от строк α 1 , α 2 , …, α k . Аналогичным образом можно ввести понятие линейной зависимости и линейной независимости между столбцами матрицы.

Теорема 1.2.(о базисном миноре) Любая строка матрицы А является линейной комбинацией её базисных строк.

Д о к а з а т е л ь с т в о. Предположим, что базисный минор матрицы (8) расположен в её верхнем левом углу, т.е. в первых r строках и первых r столбцах. Такое предположение не уменьшает общности рассуждения. Пусть k – номер любой строки матрицы А ( k может принимать значения от 1 до m ), а l – номер любого её столбца (l может принимать значения от 1 до n ).

Рассмотрим следующий минор матрицы (8):

a 11 a 12 … a 1r a 1 l

a 21 a 22 … a 11 a 1l

a r1 a r2 … a rr a rl

………………………

a k1 a k2 … a kr a k l

Если k r , то ∆ = 0, так как в нем имеется две одинаковые строки. Аналогично ∆ = 0 и при l r .

Разложив определитель ∆ по элементам последнего столбца, получим

a 1 l A 1 l + a 2 l A 2 l + … + a r l A r l + a k l A k l = 0,

Придавая l значения, получаем:

Равенства (11) показывают, что k -я строка матрицы А является линейной комбинацией первых r строк с коэффициентами

λ 1 , λ 2 , …, λ r . Так как эти равенства справедливы при любом k от 1 до n , то т е о р е м а д о к а з а н а полностью.

Основываясь на теореме о базисном миноре, докажем справедливость следующих предложений.

1. Ранг матрицы не изменяется, если к ней приписать строку, являющуюся линейной комбинацией строк матрицы.

Действительно, базисные строки исходной матрицы будут также базисными строками в дополнительной матрице, так как строку из линейной комбинации всех строк исходной матрицы можно

представить как линейную комбинацию базисных строк.

2. Ранг матрицы А не изменится, если вычеркнуть из неё строку, являющуюся линейной комбинацией остальных строк матрицы.

В самом деле, исходная матрица А получается из матрицы с вычеркнутой строкой путем добавления строки, являющейся линейной комбинацией строк матрицы А . Таким образом, предложение 2 сводится к предложению 1.

Нахождение ранга матрицы, как это следует из его определения, требует вычисления большого числа миноров (т.е. определителей разных порядков) матрицы. Однако этот процесс можно упростить: вычисляя ранг матрицы, гораздо удобнее переходить от миноров меньших порядков к минорам больших порядков. Если найден минор r -го порядка, отличный от нуля, то при следующем шаге нужно вычислять миноры ( r + 1 )-го порядка, окаймляющие прежний минор. Если все они равны нулю, то ранг матрицы равен r.

Другим простым способом вычисления ранга матрицы является метод Гаусса, основанный на так называемых элементарных преобразованиях , выполняемых над матрицей. Такими преобразованиями будем считать:

вычеркивание строки состоящей из нулей;

прибавление к элементам одной из строк соответствующих элементов других строк, умноженных на любое число;

перестановку двух столбцов.

Теорема 1.3. Элементарные преобразования не изменяют ранга матрицы.

Д о к а з а т е л ь с т в о. Преобразование 1 следует из теоремы о линейной комбинации элементов любой строки матрицы. В самом деле, так как нулевая строка не может быть базисной, то её исключение, как и включение, не изменит ранга матрицы.

Преобразование 3 очевидно, так как перестановка двух столбцов матрицы не нарушает никаких линейных зависимостей между её строками.

Остается рассмотреть преобразование 2. Пусть к k элементам i -ой строки матрицы А прибавляются соответствующие элементы j -ой строки, умноженные на число k . Указанное преобразование можно выполнить в два приёма: сначала добавить к матрице А новую строку

с элементами a il + ka jl , вставив её после i -й строки, затем из полученной матрицы вычеркнуть j -ю строку. При первой операции ранг полученной матрицы будет равен рангу матрицы А согласно предложению 1, а при второй операции – согласно предложению 2.

Т е о р е м а д о к а з а н а.

Метод Гаусса вычисления ранга матрицы заключается в том, что путем элементарных преобразований можно привести данную матрицу А к виду

b 1 l b 1 2 … b 1 r … b 1 n

B = 0 b 22 … b 2r … b 2n

0 0 … b rr … b rn

в котором все диагональные элементы b 1 l , b 22 , …, b rr отличны от нуля, а элементы других строк, расположенные ниже диагональных, равны нулю.

Учитывая, что ранг не меняется при элементарных преобразованиях, имеем rang A = rang B .

Пример 1. Вычислить ранг матрицы

1 –2 –1 3

Р е ш е н и е. Выберем минор второго порядка, стоящий в верхнем левом углу:

М 2 = 1 –2 = 4.

Так как М 2 ≠ 0, то, следовательно, ранг матрицы не меньше двух. Составляем миноры третьего порядка, окаймляющие минор второго порядка отличный от нуля. Для этого добавим к М 2 третью строку и третий столбец:

М 3 = 2 0 1 = 2 + 4 + 2 – 8 = 0.

Заменим третий столбец четвертым:

М′ 3 = 2 0 –1 = –2 – 12 – 2 + 16 = 0.

В миноре М 3 заменим третью строку четвертой:

1 –2 –1

М″ 3 = 2 0 1 = –14 + 12 + 6 – 4 = 0.

В миноре М′ 3 заменим третью строку четвертой:

1 –2 3

М′″ 3 = 2 0 –1 = 14 – 36 – 6 + 28 = 0.

Все миноры третьего порядка, окаймляющие минор второго порядка, равны нулю. А это значит, что rang A = 2.

Пример 2. Найти ранг матрицы

1 2 3 4 5

Р е ш е н и е. Произведем следующие элементарные преобразования над матрицей А . Путем умножения элементов строк на числа и сложения их с соответствующими элементами других строк добьемся, чтобы все элементы первого столбца, кроме первого, были бы нулями. Один нуль там уже имеется, поэтому, сложив четвертую строку со второй, умноженной на два, получим

1 2 3 4 5

Применим теперь элементарные преобразования таким образом, чтобы в матрице В все элементы второго столбца, кроме первых двух, были бы нулями. Один нуль там уже имеется, поэтому, сложив четвертую строку со второй, умноженной на 2, получим

Оставив три строки матрицы С без изменения и сложив четвертую строку с третьей, умноженной на –1, получим

1 2 3 4 5

Очевидно, что ранг матрицы D равен трем, так как минор третьего порядка

1 2 5

а все миноры четвертого порядка, окаймляющие минор М , равны нулю. На основании теоремы 1.3. заключаем, что rang А = 3.

Глава II. Системы линейных уравнений.

2.1. Основные понятия

В самом общем случае система линейных уравнений имеет следующий вид:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ; (13)

a m1 x 1 + a m2 x 2 + …+ a mn x n = b m ;

где х 1 , х 2 , … , х n — неизвестные, значения которых подлежат нахождению. Как видно из структуры системы (2.1), в общем случае число неизвестных не обязательно должно быть равно числу уравнений самой системы. Числа а 11 , а 12 , … , а mn называются коэффициентами системы , а b 1 , b 2 , … , b m — её свободными членами. Для удобства коэффициенты системы а ij

( i = 1, 2, . . ., m ; j = 1, 2, . . .,n ) и свободные члены b i ( i=1, 2, . . .,m ) снабжены индексами. Первый индекс коэффициентов а ij соответствует номеру уравнения, а второй индекс – номеру неизвестной х i , при которой коэффициент поставлен. Индекс свободного члена b i соответствует номеру уравнения, в которое входит b i .

Дадим определения некоторых понятий, необходимых при изучении системы уравнений. Решением системы уравнений (13) называется всякая совокупность чисел α 1 , α 2 , α n , которая будучи поставлена в систему (13) на место неизвестных х 1 , х 2 , …, х n , обращает все уравнения системы в тождества. Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если не имеет решений. Совместная система уравнений называется определенной , если она имеет одно единственное решение, и неопределенной , если она имеет по крайней мере два различных решения.

Две системы уравнений называются равносильными или эквивалентными , если они имеют одно и тоже множество решений.

2.2. Система n линейных уравнений с n

неизвестными. Правило Крамера.

Пусть дана система n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ; (14)

a n1 x 1 + a n2 x 2 + …+ a nn x n = b n ;

Определителем системы (14) называется определитель, составленный из коэффициентов а ij .

a 11 a 12 … a 1n

∆ = a 21 a 22 … a 2n

a n1 a n2 … a nn

Рассмотрим случай, когда ∆ ≠ 0. Докажем, что в этом случае система (14) является определенной, т.е. имеет одно единственное решение. Как и ранее, через А ij будем обозначать алгебраическое дополнение элемента а ij в определителе ∆.

Умножим каждое уравнение системы (14) на алгебраические дополнения элементов i -го столбца определителя ∆ , т.е. первое уравнение умножим на А 1i , второе – на А 2i и т.д., наконец, последнее уравнение – на А ni , а затем все полученные уравнения системы сложим. В результате будем иметь

( a 11 x 1 + a 12 x 2 + …+ a 1i x i + …+ a 1n x n ) A 1i + ( a 21 x 1 + a 22 x 2 + …+ a 2i x i +

+ …+ a 2n x n ) A 2i + …+ ( a n1 x 1 + a n2 x 2 + …+ a ni x i + …+ a n x nn ) A ni = b 1 A 1i + b 2 A 2i + …+ b n A ni

или, сгруппировав члены относительно известных x 1 , x 2 , …, x n , получим

( a 11 A 1i + a 21 A 2i + …+ a n1 A ni ) x 1 + … +

+ ( a 1i A 1i + a 2i A 2i + …+ a ni A ni ) x i + … +

+ ( a 1n A 1i + a 2n A 2i + …+ a nn A ni ) x n =

= b 1 A 1i + b 2 A 2i + …+ b n A ni . (15)

Коэффициент при неизвестной х i равен определителю ∆, а коэффициенты при всех других неизвестных равны нулю. Свободный

член уравнения (15) отличается от коэффициента при х 1 тем, что коэффициенты а 1i , а 2i , …, а ni заменены свободными членами

b 1 , b 2 , …, b n уравнения (14). Следовательно, выражение

b 1 A 1i + b 2 A 2i + …+ b n A ni есть определитель i -го порядка, отличающийся от определителя только i -м столбцом, который заменен столбцом свободных членов. Обозначив этот определитель ∆ x i , будем иметь

a 11 a 12 … b 1 … a 1n

Методическое пособие «Системы уравнений»

Тема «Системы уравнений» в школьной программе достаточна важна как для самой математики, так и для других наук. По сравнению с уравнениями с одной переменной системы часто оказываются более удобным аппаратом как в самой математике, так и в её приложениях. Можно указать много задач, решение которых с помощью уравнений с одной переменной требует большего труда, чем решение с помощью системы уравнений с несколькими переменными. Не случайно, что даже тогда, когда решение задачи без особого умственного напряжения может быть сведено к решению одного уравнения, многие учащиеся предпочитают решать её с помощью системы уравнений.

Системы уравнений решаются на протяжении всего курса математики, начиная с 7 класса. Они находят применение при изучении новых математических операций, функций и их свойств, тождеств и тождественных преобразований. Графическое решение систем уравнений раскрывает значение методов аналитической геометрии, а также связь между числом, геометрической фигурой и переменной.

Таким образом, решение систем уравнений является важным средством закрепления, углубления и развития теоретических знаний.

Данная тема является также материалом для организации повторения и систематизации знаний.

А в последние годы, когда экзамены принимаются в форме ГИА и ЕГЭ, на уроках итогового повторения происходит расширение и углубление знаний.

Анализ сдачи экзаменов в такой форме за прошлые годы показывает, что с решением систем уравнений справляются не более 25 % выпускников; особые затруднения вызывают у них те системы, которые можно решить только графическим способом. Кроме того, с каждым годом усложняются системы уравнений, которые даются в части «С» и требуют полного развернутого ответа.

Результаты ЕГЭ ещё раз доказывают важность изучения данной темы в школе.

На основании этого была сформулирована цель работы: разработать методику организации повторения и систематизации знаний учащихся, полученных при изучении систем уравнений.

Для достижения цели поставлены задачи:
1) изучить психолого-педагогическую и методическую литературу, посвященную проблеме повторения и систематизации знаний;
2) Рассмотреть изложение темы в школьных учебниках 7-11 классов, изучить тематическое планирование;
3) Разработать методику, направленную на повторение и систематизацию методов решения систем уравнений школьного курса математики.

Работа состоит из трёх глав. В первой главе затронуты вопросы повторения и систематизации систем уравнений, а также приведён обзор рассматриваемой темы в школьных учебниках. Во второй главе дана классификация систем уравнений, рассмотрены методы их решения, приведены примеры решений систем. Каждая часть предусматривает набор задач для закрепления материала, для самостоятельной работы учащихся, а также контролирующие задания. В заключении приведён список используемой литературы.


источники:

http://www.bestreferat.ru/referat-46762.html

http://pedsovet.su/load/136-1-0-22345

Название: Способы решения систем линейных уравнений
Раздел: Рефераты по математике
Тип: реферат Добавлен 22:42:34 10 июля 2005 Похожие работы
Просмотров: 13600 Комментариев: 22 Оценило: 14 человек Средний балл: 3.9 Оценка: 4 Скачать