Способы аппроксимации дифференциальных операторов в уравнении теплопроводности

Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы.

    Владислав Грузинский 5 лет назад Просмотров:

1 Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы. 1 Разностная аппроксимация уравнения теплопроводности Рассмотрим различные варианты разностной аппроксимации линейного одномерного по пространству уравнения теплопроводности: где T > 0 некоторая константа. u t = u + fx, t, x 0, l, t 0, T ], 1.1 x Введем в области D = <0 x l, 0 t T >равномерную сетку с шагом по координате и шагом по времени: x =, = 0, 1. = l; t j = j, j = 0, 1. M, M = T. Уравнение 1.1 содержит как производные по пространственной переменной x, так и по времени t, поэтому для построения его разностной аппроксимации придется использовать узлы сетки, соответствующие различным j. Все узлы сетки, отвечающие фиксированному j, называют j-м временным слоем. Свойства разностных схем для уравнения 1.1 зависят от того, на каком слое j по времени аппроксимируется выражение u x. Рассмотрим возможные варианты. Вариант 1: явная схема. Для аппроксимации оператора L = t x приведенный на рис. 1. в уравнении 1.1 используем шаблон, 1

2 Рис. 1: Шаблон явной схемы для уравнения теплопроводности. Соответствующий разностный оператор L 0 u имеет вид: L 0 ux, t + ux, t ux +, t ux, t + ux, t u =. Далее для краткости будем использовать следующие стандартные обозначения: u = ux, t; û = ux, t +. Тогда: u t = û u, L 0 u = u t u xx. Найдем погрешность аппроксимации разностным оператором L 0 исходного дифференциального оператора L в точке x, t. В случае достаточно гладкой функции ux, t при достаточно малых шагах и имеем: u t = ux, t + ux, t = ux, t t + O, 1. Следовательно, разностный оператор L 0 аппроксимирует дифференциальный оператор L с погрешностью O + в точке x, t: L 0 u xx = ux, t x + O. 1.3 ux, t u = t ux, t x > << >L[ux,t] +O +. Введем сеточную функцию ϕ = ϕx, t j, аппроксимирующую правую часть fx, t уравнения 1.1 на всех внутренних узлах x, t j сетки с погрешностью O +. В качестве ϕ можно взять, например ϕx, t j = fx, t j. Тогда разностное уравнение L 0 y = ϕ будет аппроксимировать исходное дифференциальное уравнение теплопроводности 1.1 с первым порядком погрешности по и вторым по.

3 Вариант. Чисто неявная схема. Используем для аппроксимации оператора L = t x приведенный на рис.. в уравнении 1.1 шаблон, Рис. : Шаблон неявной схемы для уравнения теплопроводности. Тогда разностная аппроксимация оператора L уравнения теплопроводности будет выглядеть следующим образом: L 1 ux, t + ux, t ux +, t + ux, t + + ux, t + u = = u t û xx. Рассмотрим погрешность аппроксимации разностным оператором L 1 исходного дифференциального оператора L в точках x, t, x, t +. Так как для достаточно гладкой функции ux, t справедливы равенства û xx = ux, t + x + O = ux, t x + O +, 1.4 то с учетом 1. получаем, что оператор L 1 аппроксимирует дифференциальный оператор L в уравнении 1.1 с погрешностью O + в точках x, t и x, t + : L 1 ux, t u = t ux, t x > << >L[ux,t] +O + ux, t + = ux, t + +O +. > t << x >L[ux,t+] Беря в качестве сеточной аппроксимации правой части уравнения 1.1, например, функцию ϕx, t j = fx, t j+1, получим разностное уравнение L 1 y = ϕ, аппроксимирующее 1.1 с погрешностью O +. 3

4 Вариант 3. Неявная схема с весами. Используем шаблон, приведенный на рис. 3, и линейную комбинацию операторов L 0 и L 1 для аппроксимации дифференциального оператора L: L σ u = σl1 u+1 σl0 u = σu t σû xx +1 σu t 1 σu xx = u t σû xx + 1 σu xx, где σ 0, 1. Рис. 3: Шаблон неявной схемы с весами для уравнения теплопроводности. Пользуясь равенствами 1., 1.3 и 1.4, получаем, что оператор L σ аппроксимирует исходный дифференциальный оператор L с погрешностью O + в точках x, t, x, t+ при любом σ. По определению погрешность ψx, t = L σ u Lu 1.5 аппроксимации выражения Lu разностным выражением L σ u может вычисляться в любой точке x, t, а не обязательно в каком-либо узле сетки, так как в соотношении 1.5 функция ux, t это произвольная достаточно гладкая функция непрерывных аргументов x и t. Поэтому рассмотрим погрешность аппроксимации оператором L σ дифференциального оператора L в центральной точке x, t шаблона, приведенного на рис. 3. Пользуясь для достаточно гладкой функции ux, t разложением в ряд Тейлора в окрестности точки x, t + 0.5, при малых и получаем: ux, t + ux, t u t = = u t + O, x,t+0.5 û xx = u x + O = u x,t+ x + 3 u x,t+0.5 t x + O +, x,t+0.5 u xx = u x + O = u x,t x x,t u t x + O +. x,t+0.5 4

5 Следовательно, при σ = 0.5 в точке x, t оператор L 0.5 в силу своей симметрии аппроксимирует L со вторым порядком погрешности аппроксимации по и : L σ u = ux, t + t ux, t + x > << >L[ux,t+ ] 3 ux, t + σ 1 + O +. > <<>x t 0 при σ=0.5 Для того, чтобы получить разностное уравнение, аппроксимирующее дифференциальное уравнение u t = u + fx, t x с погрешностью O + в точке x, t +, достаточно взять в качестве сеточной аппроксимации правой части fx, t этого уравнения функцию ϕx, t j = fx, t j Итак, разностное уравнение L 0.5 y = ϕ, где ϕx, t j = fx, t j + 0.5, аппроксимирует уравнение 1.1 со вторым порядком погрешности по и. Реализация явной, неявной и симметричной разностных схем для начально-краевой задачи для уравнения теплопроводности на отрезке. Пример.1. Постройте явную разностную схему для следующей начально-краевой задачи на отрезке x [0, 1]: u t = u + x, 0 6 задаче с однородными граничными условиями: v t = v, 0 7 Итак, первый вариант явной разностной схемы для задачи.1, обладающей погрешностью аппроксимации O +, имеет вид: y j = yj 1 yj + yj +1 + x, = 1. 1, j = 0, 1. M 1, y 0 3πx = sn, = 0, 1. 4 y j 0 = 0, y j yj 1 = t j, j = 0, 1. M. Рассмотрим алгоритм решения системы.4. При j = 0 значения y j известны из начального условия. Следовательно, при каждом фиксированном j = 0, 1. M 1 неизвестными являются. Найти их можно следующим образом: 1 при = 1. 1 из первого уравнения системы.4 находим = y j + y j +1 yj + yj 1 + x ; при = 0 и = пользуемся граничными условиями, учитывая, что 1 и 1 уже известны: 0 = 0, = yj t j+1; 3 переходим на новый слой по времени, увеличивая j на единицу и повторяем действия 1 и. На рис.4-6 приведены результаты решения системы.4 для = 50 и M = Рис. 4: Аналитическое решение задачи.1. Если мы хотим, чтобы явная схема аппроксимировала исходную задачу с погрешностью O +, то можно использовать тот же прием, который применялся ранее для ап- 7

8 Рис. 5: Численное решение задачи.1 с помощью явной схемы. Рис. 6: Погрешность численного решения задачи.1 с помощью явной схемы. проксимации граничного условия, содержащего производную, в краевой задаче для обыкновенного дифференциального уравнения на отрезке. Пусть ux, t решение задачи.1. Рассмотрим выражение: u x = ux, t ux, t ux, t = ux, t + O = x x ux, t = ux, t x + O. x t Заменяя в нем производную u t конечной разностью: ux, t t = ux, t ux, t + O, 8

9 получим ux, t ux, t = ux, t x ux, t ux, t x + O +. Переходя в полученном равенстве к пределу при x 1 и учитывая, что по условию u x = t, x=1 находим, что при t = t j+1 имеет место равенство: u j+1 uj+1 1 = t j+1 u j+1 uj 1 + O +. Следовательно, разностное уравнение yj+1 1 = t j+1 yj 1.5 аппроксимирует граничное условие Неймана при x = 1 с погрешностью O +. Таким образом, меняя в схеме.4 уравнение.3 на.5, мы получим схему, аппроксимирующую исходную задачу на ее решении с погрешностью O +. Уравнение.5 удобно переписать в виде: 1 = t j yj, j = 0, 1. M 1, и использовать при уже найденных 1, yj для завершения перехода на слой j + 1. Результаты расчетов по соответствующей явной схеме на той же сетке, что и в предыдущем случае, приведены на рис Рис. 7: Численное решение задачи с помощью явной схемы с граничным условием.5. 9

10 Рис. 8: Погрешность решения задачи с помощью явной схемы с граничным условием.5. Также для получения схемы, имеющей погрешность аппроксимации O +, можно аппроксимировать граничное условие Неймана при x = 1 с помощью трехточечной первой разностной производной: 3 4yj yj+1 Переписывая это уравнение в виде = t j+1, j = 0, 1. M 1. = 4 3 yj yj+1 + t j+1 3,.6 мы можем использовать его для завершения перехода на слой j + 1 при уже найденных 1 и yj+1. Погрешность вычислений по схеме с условием.6 приведена на рис. 9. Рис. 9: Погрешность решения задачи с помощью явной схемы с граничным условием.6. 10

11 Пример.. Постройте чисто неявную разностную схему для начально-краевой задачи.1. Сравните численное решение с аналитическим и исследуйте зависимость погрешности от шагов сетки. Решение. Используем ту же сетку, что и в предыдущем примере с той лишь разницей, что соотношение шагов и теперь может быть любым. Разностная аппроксимация уравнения в соответствии с неявной схемой имеет вид: y j = yj+1 1 yj x, = 1. 1, j = 0, 1. M 1..7 Дополним разностное уравнение.7 начальными и граничными условиями на сетке. Как и в случае явной схемы, начальное условие и граничное условие Дирихле при x = 0 аппроксимируются точно: y 0 3πx = sn, = 0, 1. ; 0 = 0, j = 1. M 1. Для аппроксимации граничного условия при x = 1 используем те же три способа, что и в случае явной схемы, разобранной в предыдущем примере. Первый вариант аппроксимации граничного условия Неймана при x = 1: yj+1 1 = t j+1, j = 1. M 1. Получающаяся при этом неявная разностная схема: y 0 3πx = sn, = 0, 1. 0 = 0, j = 0, 1. M 1, y j yj+1 1 = yj+1 1 yj x, = 1. 1, j = 0, 1. M 1, = t j+1, j = 0, 1. M 1.8 имеет погрешность аппроксимации O +. Значения сеточной функции y j на нулевом слое по времени известны из начального условия, поэтому при каждом фиксированном j = 0, 1. M 1 неизвестными являются. Система уравнений, которым они удовлетворяют, имеет вид: 0 = 0, yj = yj t j+1, + yj+1 +1 = y j + x, = 1. 1,.9 11

12 то есть является системой с трехдиагональной матрицей: 0 = κ µ 1, A 1 C + B +1 = F, = 1. 1, = κ 1 + µ,.10 где κ 1 = 0, µ 1 = 0, A = B =, C = 1 +, F = y j + x, κ = 1, µ = t j+1. Очевидно, что достаточные условия устойчивости прогонки: A > 0, B > 0, C A + B, C A + B, = 1. 1, 0 κ p 1, p = 1, для системы.9 выполнены. Решая систему.9 методом прогонки и последовательно увеличивая значения j на единицу, мы полностью решим систему.8. Результаты вычислений по неявной схеме.8 в случае = M = 50 приведены на рис Рис. 10: Численное решение задачи.1 с помощью неявной схемы.8. Рис. 11: Погрешность численного решения задачи.1 с помощью неявной схемы.8. 1

13 Второй вариант аппроксимации граничного условия Неймана при x = 1: 1 = t j yj, j = 0, 1. M В этом случае для неизвестных при каждом фиксированном j получаем трехдиагональную систему вида.10, где κ = 1 1 +, µ = κ t j yj Погрешность расчетов по соответствующей неявной схеме в случае = M = 50 приведена на рис. 1.. Рис. 1: Погрешность решения задачи.1 с помощью неявной схемы с граничным условием.11. Третий вариант аппроксимации граничного условия Неймана при x = 1: = 4 3 yj yj+1 + t j+1 3 Для того, чтобы получить для неизвестных.1 систему с трехдиагональной матрицей при каждом фиксированном j, исключим из уравнения.1 неизвестное. Для этого воспользуемся уравнением.7 при = 1: yj yj yj+1 = F 1. Следовательно, = + 1 yj+1 F 1, 13

14 и уравнение.1 принимает вид: = 1 В результате для неизвестных.10, где κ = 1, 1 + F 1 + t j+1. приходим к системе с трехдиагональной матрицей вида µ = F 1 + t j+1. Погрешность расчетов по соответствующей схеме в случае = M = 50 приведена на рис. 13. Рис. 13: Погрешность численного решения задачи.1 с помощью неявной схемы с граничным условием.1. Пример.3. Постройте симметричную разностную схему схему с весом σ = 0.5 для начально-краевой задачи.1. Сравните численное решение с аналитическим и исследуйте зависимость погрешности от шагов сетки. Решение. Аппроксимация уравнения u t = u x + x в соответствии с симметричной разностной схемой имеет вид: y j = 1 y j+1 1 yj yj 1 yj + yj +1 + x,.13 где = 1. 1, j = 0, 1. M 1. Разностное уравнение.13 аппроксимирует исходное дифференциальное уравнение теплопроводности с погрешностью O + на всех внутренних узлах сетки. 14

15 Начальное условие и условие Дирихле при x = 0 аппроксимируются так же, как и в двух рассмотренных ранее случаях. Граничное условие Неймана при x = 1 можно аппроксимировать как с первым, так и со вторым порядком по. Если в качестве аппроксимации условия при x = 1 берется разностное уравнение yj+1 1 = t j+1, j = 1. M 1, то схема будет иметь погрешность аппроксимации O +. Соответствующая система для неизвестных будет трехдиагональной: 0 = 0, A 1 C + B +1 = F, = 1. 1, = yj t j+1,.14 где A = B =, C = 1 + A, F = y j + x + yj 1 yj + yj +1. Достаточные условия устойчивости прогонки для системы.14 выполнены. Погрешность решения задачи по схеме.14 для = M = 50 приведена на рис. 14. Рис. 14: Погрешность численного решения задачи.1 с помощью симметричной схемы. Построим аппроксимацию граничного условия Неймана при x = 1 с погрешностью O +. Рассмотрим равенство: ux, t ux, t = ux, t x ux, t t x + O,.15 где ux, t решение исходной задачи.1. Положим в равенстве.15 t = t j Так как ux, t j ux, t j =

16 и получаем: 1 = 1 u j uj 1 + uj+1 ux, tj ux, t j ux, t t t=tj +0.5 u j+1 1 = ux, t x + ux, t j+1 ux, t j+1 + O = ux, t j+1 ux, t j x,t j O, u j+1 u j x + O +. Перейдем в полученном равенстве к пределу при x 1 то есть при, учитывая граничные условия задачи: 1 u j uj 1 + uj+1 uj = t j Следовательно, разностное уравнение y j yj 1 + yj+1 yj+1 1 = t j +0.5 будет аппроксимировать условие u x = t x=1 yj u j+1 uj с погрешностью O +. Соответствующая система для вид: где 0 = 0, 1 1 A 1 C + B +1 = F, = 1. 1, = κ 1 + µ, 1 κ = 1 +, µ = κ 1 + yj + O +., j = 0, 1. M 1.16 при фиксированном j имеет + t j + y j + yj Погрешность, получаемая при численном решении задачи с использованием граничного условия.16, для = M = 50 приведена на рис. 15. Такой же порядок погрешности аппроксимации можно получить, используя граничное условие = 4 3 yj yj+1 + t j Исключим из этого уравнения неизвестное, используя уравнение.13 при = 1: Так как yj yj+1 = F 1. = + 1 yj+1 F 1, 16

17 Рис. 15: Погрешность численного решения задачи.1 с помощью симметричной схемы с граничным условием.16. уравнение.18 можно переписать в виде: = F 1 + t j+1. В результате мы снова придем к системе с трехдиагональной матрицей вида.17 для неизвестных при каждом фиксированном j = 0, 1. M 1, где теперь κ = 1, µ = F 1 + t j+1. Погрешность решения по предложенной схеме при = M = 50 приведена на рис. 16. Рис. 16: Погрешность решения задачи с помощью симметричной схемы с граничным условием

18 3 Задачи для самостоятельного решения Решите аналитически и численно при помощи явной, неявной и симметричной схем начальнокраевую задачу для уравнения теплопроводности на отрезке: u t = u a + fx, t, x 0, l, t 0, T ], x ux, 0 = u 0 x, u γ 0 x + δ 0u = g 0 t, x=0 u γ 1 x + δ 1u = g 1 t, x=l где: x а a =, f = cos e t, u 0 = π x, γ 0 = 1, δ 0 = 0, γ 1 = 0, δ 1 = 1, g 0 = 1, g 1 = 0, l = π; б a = 1, f = e t x / 1, u 0 = 1 + e t x /, γ 0 = 1, δ 0 = 0, γ 1 = 1, δ 1 = 0, g 0 = 0, g 1 = e t, l = 1; в a = 0.5, f = e t, u 0 = 1 + sn 3x, γ 0 = 0, δ 0 = 1, γ 1 = 1, δ 1 = 0, g 0 = e t, g 1 = 0, l = π/; 3πx г a = 1, f = 0, u 0 = 3 x + cos, γ 0 = 1, δ 0 = 0, γ 1 = 0, δ 1 = 1, g 0 = 1, g 1 = 1, l = ; 4 д a = 0.1, f = 0, u 0 = cosπx + x + x, γ 0 = 1, δ 0 = 0, γ 1 = 1, δ 1 = 0, g 0 = 1, g 1 = 5, l =. Сравните результаты численного решения по разным схемам между собой и с аналитическим решением задачи. 18

Уравнение теплопроводности

Ранее (см. разд. 2.1.2, 2.1.3) уже были построены и исследованы разностные схемы решения смешанной задачи для одномерного уравнения теплопроводности:

(2.75)

Были получены две двухслойные схемы — явная (2.3) и неявная (2.4). В явной схеме значения сеточной функции на верхнем (j + 1)-ом слое вычисляли с помощью решения на нижнем слое [соотношение (2.13)]. Для нахождения решения на (j + 1)-м слое по неявной схеме была получена трехдиагональная система линейных алгебраических уравнений (2.22), которую решают методом прогонки.

Неявная схема безусловно устойчива, явная схема устойчива при выполнении условия

Обе схемы сходятся к решению исходной задачи со скоростью .

Схемы (2.3), (2.4) построены для случая, когда значения искомой функции (температуры) Uна границах х = 0, х = 1определяются заданными функциями . Однако граничные условия в смешанной задаче (2.75) могут быть и иными, в них может входить производная искомой функции. Например, если конец стержня х=0 теплоизолирован, то условие имеет вид

В этом случае, как и при решении волнового уравнения, данное условие нужно записывать в схемах (2.3), (2.4) в разностном виде.

Перейдем теперь к построению разностных схем для уравнения теплопроводности с двумя пространственными переменными. Примем для простоты а = 1. Тогда это уравнение можно записать в виде

(2.76)

Пусть при t=0 начальное условие задано в виде

(2.77)

В отличие от волнового уравнения, требующего два начальных условия, в уравнение теплопроводности входит только первая производная по t, и необходимо задавать одно начальное условие.

Часто задачи теплопроводности или диффузии, описываемые двумерным уравнением (2.76), решаются в ограниченной области. Тогда, кроме начального условия (2.77), нужно формулировать граничные условия. В частности, если расчетная область представляет прямоугольный параллелепипед (рис. 2.24), то нужно задавать граничные условия на его боковых гранях. Начальное условие (2.77) задано на нижнем основании параллелепипеда.

Рис. 2.24. Расчетная область

Введем простейшую сетку с ячейками в виде прямоугольных параллелепипедов, для чего проведем три семейства плоскостей: хi= ih1(i=0,1. I), (j=0,1. J), . Значение сеточной функции в узлах обозначим символом . С помощью этих значений можно построить разностные схемы для уравнения (2.76).

Рассмотренные выше схемы для одномерного уравнения легко обобщаются на двумерный случай.

Построим явную разностную схему, шаблон которой изображен на рис. 2.25. Аппроксимируя производные отношениями конечных разностей, получаем следующее сеточное уравнение:

Рис. 2.25. Шаблон двумерной схемы

Отсюда можно найти явное выражение для значения сеточной функции на (k + 1)-ом слое:

(2.78)

Условие устойчивости имеет вид

(2.79)

При получается особенно простой вид схемы (2.78):

(2.80)

Полученная схема сходится со скоростью

Формулы (2.78) или (2.80) представляют собой рекуррентные соотношения для последовательного вычисления сеточной функции во внутренних узлах слоев k = 1,2. К. На нулевом слое используется начальное условие (2.77), которое записывается в виде

(2.81)

Значения в граничных узлах вычисляют с помощью граничных условий.

Алгоритм решения смешанной задачи для двумерного уравнения теплопроводности изображен на рис. 2.26. Здесь решение хранится на двух слоях: нижнем (массив ) и верхнем (массив ). Блоки граничных условий необходимо сформировать в зависимости от конкретного вида этих условий. Результаты выводят на каждом слое, хотя можно ввести шаг выдачи (см. рис. 2.13).

Рис. 2.26. Алгоритм решения двумерного уравнения теплопроводности

Построим теперь абсолютно устойчивую неявную схему для решения уравнения (2.76), аналогичную схеме (2.4) для одномерного уравнения теплопроводности. Аппроксимируя в (2.76) вторые производные по пространственным переменным на (k + 1)-ом слое, получаем следующее разностное уравнение:

(2.82)

Это уравнение можно записать в виде системы линейных алгебраических уравнений относительно значений сеточной функции на каждом слое:

(2.83)

К этой системе уравнений нужно добавить граничные условия для определения значений сеточной функции в граничных узлах (т.е. при i= 0, I; j = 0, J). На нулевом слое решение находится из начального условия (2.77), представленного в виде (2.81).

Система (2.83), полученная для двумерного уравнения теплопроводности, имеет более сложный вид, чем аналогичная система (2.22) для одномерного случая, которую можно решить методом прогонки. Таким образом, распространение неявной схемы на многомерный случай приводит к значительному усложнению вычислительного алгоритма и увеличению объема вычислений.

Недостатком явной схемы (2.78) является жесткое ограничение на шаг по времени τ, вытекающее из условия (2.79). Существуют абсолютно устойчивые экономичные разностные схемы, позволяющие вести расчет со сравнительно большим значением шага по времени и требующие меньшего объема вычислений. Две из них будут рассмотрены в разд. 2.3.3.

Разностные аппроксимации

Разностные аппроксимации

1.Примеры разностных аппроксимаций.

Различные способы приближенной замены одномерных дифференциальных уравнений разностными изучались ранее. Напомним примеры разностных аппроксимаций и введем необходимые обозначения. Будем рассматривать равномерную сетку с шагом h , т.е. множество точек

Пусть u(x) – достаточно гладкая функция, заданная на отрезке [x i-1 , x i+1 ]. Обозначим

называются соответственно правой, левой и центральной разностными производными функции u(x) в точке x i , т.е. при фиксированном x i и при h ® 0 (тем самым при i ® ¥ ) пределом этих отношений является u’(x i ) . Проводя разложение по формуле Тейлора, получим

u x,i – u’(x i ) = 0,5hu’’(x i ) + O(h 2 ),

u x,i – u’(x i ) = -0,5hu’’(x i ) + O(h 2 ),

u x,i – u’(x i ) = O(h 2 ),

Отсюда видно, что левая и правая разностные производные аппроксимируют u’(x) с первым порядком по h , а центральная разностная производная – со вторым порядком. Нетрудно показать, что вторая разностная производная

аппроксимирует u’’(x i ) со вторым порядком по h , причем справедливо разложение

Рассмотрим дифференциальное выражение

(1)

с переменным коэффициентом k(x) . Заменим выражение (1) разностным отношением

(2)

где a=a(x) – функция, определенная на сетке w h . Найдем условия, которым должна удовлетворять функция a(x) для того, чтобы отношение (au x ) x,i аппроксимировало (ku’)’ в точке x i со вторым порядком по h . Подставляя в (2) разложения

где u i ’ = u’(x i ) , получим

С другой стороны, Lu = (ku’)’ = ku’’ + k’u’,

т.е.

Отсюда видно, что L h u–Lu = O(h 2 ) , если выполнены условия

(3)

Условия (3) называются достаточными условиями второго порядка аппроксимации . При их выводе предполагалось, что функция u(x) имеет непрерывную четвертую производную и k(x) – дифференцируемая функция. Нетрудно показать, что условиям (3) удовлетворяют, например, следующие функции:

Заметим, что если положить a i = k(x i ), то получим только первый порядок аппроксимации.

В качестве следующего примера рассмотрим разностную аппроксимацию оператора Лапласа

(4)

Введем на плоскости (x 1 , x 2 ) прямоугольную сетку с шагом h 1 по направлению x 1 и с шагом h 2 по направлению x 2 , т.е. множество точек

Из предыдущих рассуждений следует, что разностное выражение

(5)

аппроксимирует дифференциальное выражение (4) со вторым порядком, т.е. L h u ij – Lu(x i 1 , x j 2 ) = O(h 2 1 ) + O(h 2 2 ). Более того, для функций u(x 1 , x 2 ), обладающих непрерывными шестыми производными, справедливо разложение

Разностное выражение (5) называется пятиточечным разностным оператором Лапласа , так как оно содержит значения функции u(x 1 , x 2 ) в пяти точках сетки, а именно в точках (x 1 i , x 2 j ), (x 1 i ± 1 , x 2 j ), (x 1 i , x 2 j ± 1 ). Указанное множество точек называется шаблоном разностного оператора. Возможны разностные аппроксимации оператора Лапласа и на шаблонах, содержащих большее число точек.

2. Исследование аппроксимации и сходимости

2.1. Аппроксимация дифференциального уравнения.

Ранее рассматривалась краевая задача

(k(x) u’(x))’ – q(x) u(x) + f(x) = 0, 0 (1)

– k(0) u’(0) + b u(0) = m 1 , u(l) = m 2 , (2)

k(x) ³ c 1 > 0, b ³ 0,

для которой интегро-интерполяционным методом была построена разностная схема

(3), (4)

Обозначим через Lu(x) левую часть уравнения (1) и через L h y i – левую часть уравнения (3), т.е.

Пусть u (x) – достаточно гладкая функция и u (x i ) – ее значение в точке x i сетки

Говорят, что разностный оператор L h аппроксимирует дифференциальный оператор L в точке x=x i , если разность L h u i – L h u (x i ) стремится к нулю при h ® 0. В этом случае говорят также, что разностное уравнение (3) аппроксимирует дифференциальное уравнение (1).

Чтобы установить наличие аппроксимации, достаточно разложить по формуле Тейлора в точке x=x i значения u i ± 1 = u (x i ± h) , входящие в разностное выражение L h u i . Большая часть этой работы проделана в предыдущей главе, где показано, что при условиях

(8)

Если кроме того, докажем, что

d i = q(x i ) + O(h 2 ), j i = f(x i ) + O(h 2 ) (9)

то тем самым будет установлено, что оператор L h аппроксимирует L со вторым порядком по h , т.е.

L h u i – L u (x i ) = O(h 2 ), i = 1, 2,…, N–1 (10)

Итак, доказательство второго порядка аппроксимации сводится к проверке сводится к проверке условий (8), (9) для коэффициентов (5), (6). Проверим сначала выполнение условий (8). Обозначая p(x) = k -1 (x) , получим

т.е. условия (8) выполнены. Условия (9) выполнены в силу того, что замена интегралов (6) значениями q i , f i соответствует приближенному вычислению этих интегралов по формуле прямоугольников с узлом в середине отрезка интегрирования.

2.2. Аппроксимация граничного условия.

Исследуем погрешность аппроксимации разностного граничного условия (4). Обозначим l h u (0) = –a 1 u x, 0 + b u 0 . Если u (x) – произвольная достаточно гладкая функция, то очевидно

l h u (0) = –k(0) u ’(0) + b u (0) + O(h) ,

т.е. имеет место аппроксимация первого порядка по h . Однако если u =u(x) – решение задачи (1), (2), то разностное граничное условие (4) имеет второй порядок аппроксимации, т.е.

Докажем последнее утверждение. Используя разложение

u x, 0 = (u 1 – u 0 )/h = u’(x 1/2 ) + O(h 2 ), x 1/2 = 0,5h,

a 1 = k 1/2 + O(h 2 )

Учитывая граничное условие (2), получаем

l h u(0) = 0,5h [– (ku’)’(0) + d 0 u 0 – j 0 ] + O(h 2 ) .

Выражение, стоящее в квадратных скобках, преобразуем, учитывая уравнение (1), к виду

– (ku’)’(0) + d 0 u 0 – j 0 = – (ku’)’(0) + q(0)u(0) – f(0) +

+ (d 0 – q(0))u 0 – (f(0) – j 0 ) = (d 0 – q(0))u 0 – (f(0) – j 0 ) .

что и требовалось доказать.

Таким образом, при достаточной гладкости коэффициентов k(x), q(x), f(x) и решения u(x) разностная схема (10) аппроксимирует исходную задачу (2) со вторым порядком по h .

При практическом использовании разностной схемы для нахождения ее коэффициентов не обязательно вычислять интегралы (4), (6) точно. Можно воспользоваться коэффициентами, полученными путем замены этих интегралов квадратурными формулами, имеющими точность O(h 2 ) и выше. Например, в результате применения формулы прямоугольников получим следующие коэффициенты: a i = k(x i – 0,5h), d i = q(x i ), j i = f(x i ).

Применяя формулу трапеций, получим

Представление коэффициентов разностной схемы в виде интегралов (4), (6) оказывается полезным при исследовании сходимости в случае разрывных функций k(x), q(x), f(x) .

2.3. Уравнение для погрешности.

Решение y i = y(x i ) разностной задачи (3), (4) зависит от шага h сетки, y(x i ) = y h (x i ) . По существу, мы имеем семейство решений , зависящее от параметра h . Говорят, что решение y h (x) разностной задачи сходится к решению u(x) исходной дифференциальной задачи, если при h ® 0 погрешность y h (x i ) – u(x i ), i = 0, 1,…, N , стремится к нулю в некоторой норме. В настоящем параграфе в качестве такой нормы будем брать норму в сеточном пространстве C( w h ) , т.е. положим

Говорят, что разностная схема имеет m-й порядок точности (или сходится с порядком m ), если

где m>0, M>0 – константы, не зависящие от h .

Выше было установлено, что схема (3), (4) имеет второй порядок аппроксимации. Докажем теперь, что эта схема имеет и второй порядок точности. Для этого прежде всего выпишем уравнение, которому удовлетворяет погрешность z i = y i – u(x i ) . Поставим y i = z i + u(x i ) в уравнения (3), (4). Тогда получим уравнения

(11), (12)

Функция y i , входящая в правую часть уравнения (11), называется погрешностью аппроксимации дифференциального уравнения (1) разностным уравнением (3) на решении задачи (1), (2). В п.1 было доказано, что y i = O(h 2 ) при h ® 0, i=1, 2,…, N–1 . Аналогично, величина n 1 является по определению погрешностью аппроксимации краевого условия (2) разностным краевым условием (4) на решении задачи (1), (2), причем n 1 =O(h 2 ) . Таким образом, структура уравнений для погрешности (11), (12) та же, что и у разностной схемы (3), (4), отличаются только правые части.

Чтобы доказать сходимость разностной схемы, оценим решение задачи (11), (12) через правые части y i , n 1 , т.е. получим неравенство вида

(13)

с константой M 1 , не зависящей от h . Из этого неравенства и будет следовать, что

Отметим, что неравенства вида (13), называемые априорными оценками, нашли широкое применение в теории разностных схем. Поскольку структура для погрешности (11), (12) та же, что и у разностной схемы (3), (4), а отличаются только правые части, то оценка (13) выполняется одновременно с аналогичной оценкой

для разностной схемы (3), (4) при m 2 = 0 . Последняя оценка выражает устойчивость решения разностной задачи по правым частям j и m 1 .

2.4. Разностные тождества и неравенства.

Для того, чтобы доказать неравенство (13), нам потребуются некоторые разностные тождества и неравенства. Будем рассматривать сеточные функции, заданные на сетке (7). Обозначим

Справедливо следующее разностное утверждение:

(y, u x ) = –( u , y x ) + y N u N – y 0 u 1 . (14)

что и требовалось доказать. Тождество (14) называется формулой суммирования по частям .

Подставляя в (14) вместо u выражение az x и вместо y функцию z, получаем первую разностную формулу Грина

(15)

Здесь

В частности, если z N = 0 (как в задаче (11), (12)), то получим

(16)

и докажем, что для любой сеточной функции z i , удовлетворяющей условию z N = 0 , справедливо неравенство

(17)

Для доказательства воспользуемся тождеством

и применим неравенство Коши-Буняковского

Откуда сразу следует неравенство (17).

2.5. Доказательство сходимости.

Возвращаясь к доказательству сходимости схемы (3), (4), получим тождество, которому удовлетворяет погрешность z i = y i – u(x i ) . Для этого умножим уравнение (11) на hz i и просуммируем по i от 1 до N–1 . Тогда получим

Отсюда, применяя разностную формулу Грина (16), получим

Далее, согласно (12) имеем

следовательно, справедливо тождество

(18)

Из этого тождества и будет сейчас выведено требуемое неравенство вида (13).

Заметим прежде всего, что если

k(x) ³ c 1 > 0, b ³ 0, q(x) ³ 0,

то коэффициенты разностной схемы (3), (4) удовлетворяют неравенствам

a i ³ c 1 > 0, b ³ 0, d i ³ 0. (19)

Это утверждение сразу следует из явного представления коэффициентов (5), (6).

Воспользовавшись (19), оценим слагаемые, входящие в левую часть тождества (18), следующим образом:

Тогда придем к неравенству

(20)

Оценим сверху правую часть этого неравенства. Будем иметь

Подставляя эту оценку в (20) и учитывая неравенство (17), получим

(21)

Посколькуиз неравенства следует,

что погрешность z i = y i – u(x i ) также является величиной O(h 2 ) при h ® 0. Итак, справедливо следующее утверждение.

Пусть k(x) – непрерывно дифференцируемая и q(x), f(x) – непрерывные функции при x Î [0, l], решение u(x) задачи (1), (2) обладает непрерывными четвертыми производными. Пусть коэффициенты разностной схемы (3), (4) удовлетворяют условиям (8), (9), (19). Тогда решение разностной задачи (3), (4) сходится при h ® 0 к решению исходной дифференциальной задачи (1), (2) со вторым порядком по h, так что выполняется оценка

где M – постоянная, не зависящая от h.

3. Разностные схемы для уравнения теплопроводности

3.1. Исходная задача.

Будем рассматривать следующую первую краевую задачу для уравнения теплопроводности с постоянными коэффициентами. В области <0 £ T>требуется найти решение уравнения

(1)

удовлетворяющее начальному условию

и граничным условиям

u(0, t) = m 1 (t), u(1, t) = m 2 (t). (3)

Здесь u0(x), m 1 (t), m 2 (t) – заданные функции. Известно, что при определенных предположениях гладкости решение задачи (1)–(3) существует и единственно. В дальнейшем при исследовании аппроксимации разностных схем будем предполагать, что решение u(x, t) обладает необходимым по ходу изложения числом производных по x и по t. Решение задачи (1) – (3) удовлетворяет принципу максимума и тем самым непрерывно зависит от начальных и граничных данных.

3.2. Явная схема.

Как всегда, для построения разностной схемы надо прежде всего ввести сетку в области изменения независимых переменных и задать шаблон, т.е. множество точек сетки, участвующих в аппроксимации дифференциального выражения. Введем сетку по переменному x такую же, как в предыдущей главе, т.е.

и сетку по переменному t с шагом t , которую обозначим

Точки (x i , t n ), i = 0, 1,…, N, n = 0, 1,…, K , образуют узлы пространственно-временной сетки w h, t = w h x w t . Узлы (x i , t n ) , принадлежащие отрезкам I 0 = <0 £ x £ 1, t = 0>, I 1 = , I 2 = , называются граничными узлами сетки w h, t , а остальные узлы – внутренними. На рисунке граничные узлы обозначены крестиками, а внутренние – кружочками.

Слоем называется множество всех узлов сетки w h, t , имеющих одну и ту же временную координату. Так, n-м слоем называется множество узлов

(x 0 , t n ), (x 1 , t n ),…, (x N , t n ) .

Для функции y(x, t) , определенной на сетке w h, t , введем обозначения y n i = y(x i , t n ) ,

(4)

Иногда для упрощения записи индексы i и n будем опускать, обозначая

Чтобы аппроксимировать уравнение (1) в точке (x i , t n ), введем шаблон, изображенный на рисунке и состоящий из четырех узлов (x i ± 1 , t n ), (x i , t n ), (x i , t n+1 ). Производную ¶ u/ ¶ t заменим в точке (x i , t n ) разностным отношением y n t, i , а производную ¶ 2 u/ ¶ 2 x – второй разностной производной y n xx, i . Правую часть f(x, t) заменим приближенно сеточной функцией j n i , в качестве j n i можно взять одно из следующих выражений:

В результате получим разносное уравнение

(5)

которое аппроксимирует исходное дифференциальное уравнение в точке (x i , t n ) с первым порядком по t и вторым порядком по h при условии, что разность j n i – f(x i , t n ) имеет тот же порядок малости.

Под разностной схемой понимается совокупность разностных уравнений, аппроксимирующих основное дифференциальное уравнение во всех внутренних узлах сетки и дополнительные (начальные и граничные) условия – в граничных узлах сетки. Разностную схему по аналогии с дифференциальной задачей будем называть также разностной задачей. В данном случае разностная схема имеет вид

(6)

Эта схема представляет собой систему линейных алгебраических уравнений с числом уравнений, равным числу неизвестных. Находить решение такой системы следует по слоям. Решение на нулевом слое задано начальными условиями y 0 i = u 0 (x i ), i = 0, 1,…, N . Если решение y n i , i = 0, 1,…, N , на слое n уже найдено, то решение y i n+1 на слое n+1 находится по явной формуле

(7)

а значениядоопределяются из граничных

условий. По этой причине схема (6) называется явной разностной схемой. Несколько позже мы познакомимся и с неявными схемами, в которых для нахождения y i n+1 при заданных y i n требуется решать систему уравнений.

Погрешность разностной схемы (6) определяется как разность z i n = y i n – u(x i , t n ) между решением задачи (6) и решением исходной задачи (1) – (3). Подставляя в (6) y i n = z i n + u(x i , t n ) , получим уравнение для погрешности

(8)

где – погрешность аппроксимации разностной

схемы (6) на решении задачи (1) – (3), y i n = O( t + h 2 ) . Можно оценить решение z i n уравнения (8) через правую часть y i n и доказать тем самым сходимость разностной схемы (6) с первым порядком по t и вторым – по h. Однако это исследование мы отложим, а сейчас на примере схемы (6) продемонстрируем один распространенный прием исследования разностных схем с постоянными коэффициентами, называемый методом гармоник . Хотя данный метод не является достаточно обоснованным, в частности не учитывает влияния граничных условий и правых частей, он позволяет легко найти необходимые условия устойчивости и сходимости разностных схем. Покажем, например, что явную схему (6) можно применять лишь при условии t £ 0,5h 2 , означающем, что шаг по времени надо брать достаточно малым.

(9)

т.е. однородное уравнение, соответствующее (5). Будем искать частные решения (9), имеющие вид

y j n ( j ) = q n e ijh j ,(10)

где i – мнимая единица, j – любое действительное число и q – число, подлежащее определению. Подставляя (10) в уравнение (9) и сокращая на e ijh j , получим

(11)

Начальные условиясоответствующие решениям вида (10) (их называют гармониками), ограничены. Если для некоторого j множитель q станет по модулю больше единицы, то решение вида (10) будет неограниченно возрастать при n ® ¥ . В этом случае разностное уравнение (9) называется неустойчивым, поскольку нарушается непрерывная зависимость его решения от начальных условий. Если же |q| £ 1 для всех действительных j , то все решения вида (10) ограничены при любом n и разностное уравнение (9) называется устойчивым. В случае неустойчивости найти решение разностной задачи (6) по формулам (7) практически невозможно, так как погрешности (например погрешности округления), внесенные в начальный момент времени, будут неограниченно возрастать при увеличении n. Такие разностные схемы называются неустойчивыми.

Для уравнения (9) неравенство |q| £ 1 выполняется согласно (11) при всех j тогда и только тогда, когда g £ 0,5. Таким образом, использование схемы (6) возможно лишь при выполнении условия t £ 0,5h 2 . Разностные схемы, устойчивые лишь при некотором ограничении на отношение шагов по пространству и по времени, называются условно устойчивыми. Следовательно, схема (6) возможно устойчива, причем условие устойчивости имеет вид t /h 2 £ 0,5. Условно устойчивые схемы для уравнений параболического типа используются редко, так как они накладывают слишком сильное ограничение на шаг по времени. Действительно, пусть, например, h = 10 -2 . Тогда шаг t не должен превосходить 0,5 * 10 -4 , и для того чтобы вычислить решение y j n при t = 1 , надо взять число шагов по времени n = t -1 ³ 2 * 10 4 , т.е. провести не менее 2 * 10 4 вычислений по формулам (7).

3.3. Неявные схемы.

Чисто неявной разностной схемой для уравнения теплопроводности теплопроводности (схемой с опережением) называется разностная схема, использующая шаблон (x i , t n ), (x i ± 1 , t n+1 ), (x i , t n+1 ) и имеющая вид

(12)

Здесь j n i = f(x i , t n+1 ) + O( t + h 2 ) . Схема имеет первый порядок аппроксимации по t и второй – по h. Решение системы (12) находится, как и в случае явной схемы, по слоям, начиная с n = 1. Однако, теперь, в отличие от явной схемы, для нахождения y i n+1 по известным y i n требуется решить систему уравнений

(13)

где g = t /h 2 , F i n = y i n + t j i n . Эту систему можно решать методом прогонки, так как условия устойчивости прогонки выполнены.

Для исследования устойчивости разностной схемы (12) будем искать частные решения уравнения

имеющие вид (10). Тогда получим

следовательно, |q| £ 1 при любых j , t , h . Таким образом, схема (12) абсолютно устойчива, т.е. устойчива при любых шагах t и h . Абсолютная устойчивость является основным условием неявных схем. Теперь уже не надо брать шаг t слишком малым, можно взять, например, t = h = 10 -2 . Величина шагов сетки t , h определяются теперь необходимой точностью расчета, а не соображениями устойчивости.

Шеститочечной симметричной схемой называется разностная схема

(14)

для которой начальные и граничные условия задаются так же, как и в схеме (12). Эта схема использует шеститочечный шаблон, изображенный на рисунке.

Обобщением трех рассмотренных схем является однопараметрическое семейство схем с весами. Зададим произвольный действительный параметр s и определим разностную схему

(15)

При s = 0 получим отсюда явную схему, при s = 1 – чисто неявную схему и при s = 0,5 – симметричную схему (14). Исследуем погрешность аппроксимации схемы (15) на решении исходной задачи (1) – (3). Представим решение задачи (15) в виде y i n = u(x i , t n ) + z i n , где u(x i , t n ) – точное решение дифференциальной задачи (1) – (3). Тогда для погрешности получим систему уравнений

(16)

i = 1, 2,…, N – 1, n = 0, 1,…, K – 1,

z 0 n+1 = z N n+1 = 0, n = 0, 1,…, K – 1, z i 0 = 0, i = 0, 1,…, N.

Сеточная функция y i n , входящая в правую часть уравнения (16) и равная

(17)

называется погрешностью аппроксимации схемы (15) на решении задачи (1) – (3). Получим первые члены разложения функции y i n по степеням h и t . Будем разлагать все функции, входящие в выражение для y i n , по формуле Тейлора в точке (x i , t n + 0,5 t ). Учитывая разложения

Отсюда, проводя разложение в точке (x i , t n+1/2 ) и обозначая u = u (x i , t n+1/2 ) , будем иметь

и, перегруппировывая слагаемые, получим, что

Учитывая уравнение (1) u’’ – u = – f и следствие из него u IV – u’’ = –f’’ , окончательно можно записать, что

(18)

Из формулы (18) можно сделать следующие выводы. Если

то схема (15) имеет второй порядок аппроксимации по t и четвертый – по h . Такая схема называется схемой повышенного порядка аппроксимации. Если

то схема (15) имеет второй порядок аппроксимации по t и по h. При остальных значениях s и при j i n º 0 в виде (10), то получим

и |q| £ 1 при всех j , если

(19)

Отсюда видно, в частности, что все схемы с s ³ 0,5 абсолютно устойчивы. Схема повышенного порядка аппроксимации ( s = s * ) также абсолютно устойчива, что проверяется непосредственно.

При s ¹ 0 разностная схема (15) является неявной схемой. Для нахождения решения y i n+1 по заданным y i n требуется решать систему уравнений

(20)

где

Система (20) решается методом прогонки. Условия устойчивости прогонки при s ¹ 0 сводятся к неравенству

|1 + 2 s g | ³ 2 | s | g

и выполнены при s ³ – 1/(4 g ). Последнее неравенство следует из условия устойчивости (19) разностной схемы.

3.4. Уравнения с переменными коэффициентами и линейные уравнения.

Рассмотрим первую краевую задачу для уравнения теплопроводности с переменными коэффициентами

(21)

где r (x, t), k(x, t), f(x, t) – достаточно гладкие функции, удовлетворяющие условиям

0 1 £ k(x, t) £ c 2 , r (x, t) ³ c 3 > 0 .(22)

Дифференциальное выражениепри каждом

фиксированном t аппроксимируем в точке (x i , t) так же, как и в стационарном случае, разностным отношением

где разностный коэффициент теплопроводности a(x i , t) должен удовлетворять условиям второго порядка аппроксимации

Наиболее употребительны следующие выражения для a(x i , t) :

Разностная схема с весами для задачи (21) имеет вид

(24)

Здесь в качестве t можно взять любое значение t Î [t n , t n+1 ] , например t = t n + 0,5 t . Если в уравнении (24) t = t n + 0,5 t , s = 0,5 , то схема (24) имеет второй порядок аппроксимации по t и по h . При остальных значениях s и t выполняется первый порядок аппроксимации по t и второй – по h .

При исследовании устойчивости разностных схем с переменными коэффициентами иногда применяется принцип замороженных коэффициентов, сводящий задачу к уравнению с постоянными коэффициентами. Рассмотрим явную схему, соответствующую уравнению (24) с s = 0 и f(x i , t) º 0 , т.е. схему

(25)

Предположим, что коэффициенты r (x i , t), a(x i , t) – постоянные, r (x i , t) º r = const, a(x i , t) º a = const . Тогда уравнение (25) можно записать в виде

или

Из п.2 известно, что последнее уравнение устойчиво при t ’ £ 0,5h 2 , т.е. при

(26)

Принцип замороженных коэффициентов утверждает, что схема (25) устойчива, если условие (26) выполнено при всех допустимых значениях a(x i , t), r (x i , t) , т.е. если при всех x, t выполнены неравенства

(27)

Если известно, что 0 1 £ a(x i , t) £ c 2 , r (x i , t) ³ c 3 > 0 , то неравенство (27) будет выполнено при

Строгое обоснование устойчивости схемы (25) будет дано в примере 2 из главы 2.

Если параметр s ³ 0,5, то из принципа замороженных коэффициентов следует абсолютная устойчивость схемы (24).

Рассмотрим теперь первую краевую задачу для нелинейного уравнения теплопроводности

(28)

В случае нелинейных уравнений, когда заранее неизвестны пределы изменения функции k(u) , избегают пользоваться явными схемами. Чисто неявная схема, линейная относительно y i n+2 , i = 1, 2,…, N – 1 , имеет вид

(29)

где a i = 0,5 (k(y n i ) + k(y n i-1 )) . Эта схема абсолютно устойчива, имеет первый порядок аппроксимации по t и второй – по h . Решение y i n+1 , i = 1, 2,…, N – 1 , находится методом прогонки. Заметим, что схему (29) можно записать в виде

где k i = k(y i n ) .

Часто используется нелинейная схема

(30)

Для реализации этой схемы необходимо применить тот или иной итерационный метод. Например такой:

(31)

Здесь s – номер итерации. Как видим, нелинейные коэффициенты берутся с предыдущей итерации, а в качестве начального приближения для y i n+1 выбирается y i n . Это начальное приближение тем лучше, чем меньше шаг t . Число итераций M задается из соображений точности. В задачах с гладкими коэффициентами при k(u) ³ c 1 > 0 часто бывает достаточно провести две – три итерации. Значения y i (S+1) на новой итерации находятся из системы (31) методом прогонки. При M = 1 итерационный метод (31) совпадает с разностной схемой (29).

Для приближенного решения нелинейного уравнения (28) применяются также схемы предиктор – корректор второго порядка точности, аналогичные методу Рунге – Кутта для обыкновенных дифференциальных уравнений. Здесь переход со слоя n на слой n+1 осуществляется в два этапа. Приведем пример такой схемы. На первом этапе решается неявная линейная система уравнений

из которой находятся промежуточные значения y i n+1/2 , i = 0, 1,…, N . Затем на втором этапе используется симметричная шеститочечная схема для уравнения (28), в которой нелинейные коэффициенты a(y), f(y) вычисляются при y = y i n+1/2 , т.е. схема


источники:

http://3ys.ru/metody-resheniya-differentsialnykh-uravnenij/uravnenie-teploprovodnosti.html

http://www.km.ru/referats/7A28A6FD39144D35AA2530CCF45F8C5F