Способы получения неметаллов уравнения и примеры

Металлы и неметаллы

Содержание:

Металлы — простые вещества, в которых атомы связаны металлической связью. Поэтому определяющие физические свойства чистых металлов (следствие наличия металлической связи).

Неметаллы – это все элементы (и простые вещества), не являющиеся металлами. В нашей периодической таблице символы неметаллов красные, а металлов – синие.

На странице -> решение задач по химии собраны решения задач и заданий с решёнными примерами по всем темам химии.

Металлы и неметаллы

Весь естественный мир состоит из химических элементов И даже далекие галактики состоят из тех же химических элементов что и наша Земля.

Наименьшая частица .любого химического элемента, обладающая всеми его свойствами. — это атом .

Химические элементы делятся на металлы и неметлллы

Все металлы (кроме ртути) твердые при нормальных условиях. Однако твердость их различна.

Некоторые неметллы в свободном виде при комнатной температуре являются газами, другие — твердые, и один — жидкий.

каждый из элементов периодической системы взаимосвязан с понятиями атом , простое или сложное вещество :

Металлы и неметаллы отличаются в первую очередь строением. Изобразим строение атома натрия и хлора

Сравните строение их внешних уровней. Легко заметить, что у металлов небольшое число электронов поэтому они легко отдают наружные электроны и проявляют восстановительные свойства. Склонность металла отдавать электроны зависит от его строения прежде всего, от размера атомов: чем больше атомные радиусы, тем легче металл отдает электроны.

Металлы — простые вещество . степень окисления атомов е них равна 0. Вступая в реакции, металлы почти всегда изменяют степень окисления своих атомов. Электроотрицательность этих атомов невелика. поэтому атомы металлов приобретают положительную степень окисления. Следовательно, все металлы в той или иной степени проявляют восстановительные свойства,

А неметаллы , наоборот, имеют большое число наружных электронов и легко присоединяют недостающие жмироны и проявляют окислительные свойства . Окислительная активность неметаллов зависит, с одной стороны, от размеров атомов (чем меньше атомы, тем активнее вещество), а с другой — от прочности ковалентных связей в простом веществе (чем прочнее связи, тем менее активно вещество).

В периодической системе свойства металлов и неметаллов изменяются в периодах и группах (рис. 36).

Наблюдаются раличия и в радиусах атомов этих элементов (рис. 37),

Аналогично существует различие в образовании химической связи у металлов и неметаллов:

Существуют различия и в кристаллических решетках простых веществ. У металлов только металлическая кристаллическая решетка, а неметаллам характерны атомные и молекулярные кристаллические решетки:

Безусловно, различия в строении атомов, видах химических связей и кристаллическом строении приводят к различиям в физических свойствах металлов и неметаллов (табл. 14).

Используя полученные знания in курса химии, на практике сравните физические свойства меди и серы.

Химические элементы делятся на металлы и неметаллы. Металлы — твердые вещества <кроме ртути). Неметаллы находятся в различных агрегатных состояниях.

Строение металлов и неметаллов — главная отличительная характеристика. Металлы имеют металлическую кристаллическую решетку. А неметаллам присущи молекулярные и атомные кристаллические решетки. Металлы проявляют восстановительные. а неметаллы окислительные свойства.

Сравнение химических свойств ii способов получения металлов и неметаллов

Атомы металлов, не обладая склонностью принимать электроны, могут только их отдавать пли обобщать. Все металлы в тон или иной степени проявляют восстановительные свойства.

Казалось бы, что самым активным из металлов должен быть фракций. Однако самый из долгоживущих изотопов фракция имеет период полураспада 22.3 мин. Его равновесное содержание в земной коре только 340 г. Кроме него имеется еще один вид с периодом полураспада 3.0 млн. Его равновесное содержание в земной коре составляет лишь 0.5 г.

Вследствие этого из применяемых металлов все-таки самым активным считается цезий.

Его легкость отдачи своего наружного электрона нашла применение в фотоэлементах.

Сравнительная активность металлов определяется схим рядом активности (приводится в сокращении):

Расположение лития на первом месте в этом ряду объясняется легкостью образования гидратной оболочки в водных растворах кислот и солей.

Из расположения металлов в этом ряду видно, что самыми активными металлами являются металлы с одним внешним электроном, а самыми устойчивыми — плашка и золото. Химические свойства металлов (рис. 37).

1. С неметаллами (не со всеми ):

Наиболее активные металлы легко реагируют с галогенами и кислородом. а с азотом реагируют только литий, кальций и магний.

Реагируя с кислородом, большинство металлов образует оксиды, а наиболее активные —пероксиды и другие более сложные соединения.

2. С оксидами менее активных мешаное :

3. С растворами кислот

В этом случае возможность реакции легко определяется по ряду напряжении (реакция протекает, если металл в ряду напряжений стоит до водорода).

4. С растворами солей :


Для определения возможности протекания реакции здесь также используется ряд напряжений.

5. Краме того, наиболее активные металлы (щелочные и щелочно-земельные ) реагируют с водой :

Большинство металлов в промышленности получают восстанавливая их оксиды:

В лаборатории этого часто используют водород. Наиболее активные металлы как в промышленности, так и в лаборатории получают с помощью электролиза.

В лаборатории менее активные металлы могут быть восстановлены из растворов их солен более активными металлами.

Неметаллы. В отличие от металлов, неметаллы обладают склонностью присоединять электроны, т, е. могут проявлять окислительные свойства. Самый активный неметалл — фтор. Он бурно взаимодействует почти со всеми веществами и с большинством из них — с горением и со взрывом. Контакт фтора с водородом приводит: к воспламенению и взрыву даже при очень низких температурах В атмосфере фтора горят даже вода и платина. Фтор также способен окислять кислород. образуя фторид кислорода

Неметаллы могут окислять:

2. Другие неметаллы :

3. Многие сложные вещества :

Фтор — самый сильный окислитель. Ненамного уступают ему кислород и хлор (обратите внимание на их положение в системе элементов).

В значительно меньшей степени окислительные свойства проявляют бор. графит, алмаз, кремний и другие простые вещества, образованные элементами, примыкающими к границе между металлами и неметаллами. Атомы этих элементов менее склонны присоединять электроны. Именно эти вещества (особенно графит и водород) способны проявлять восстановительные свойства:

Неметаллы получают из природных соединении, например, путем электролиза пли сложных окислительно-восстановительных процессов.

Металлы проявляют в химических реакциях свойства восстановителем. а неметаллы — свойства окислителей.
Сравнительная активность металлов определяется электрохимическим рядом активности. Метаны и неметаллы взаимодействуют с простыми и сложными веществами. Все металлы — восстановители, при взаимодействии с другими веществами отдают свои элекроны и окисляются. Самые сальные восстановители — щелочные металлы, А неметаллы при взаимодействии с другими веществами присоединяют электроны и восстанавливаются. Самый сильный окислитель — фтор.

Соединения металлов и неметаллов

После того как мы сравнили строение п свойства простых веществ металлов и неметаллов, можно приступить к более полном классификации и сравнению свойств важнейших соединений металлов и неметаллов.

Общие формулы водородных соединений по группам периодической системы химических элементов приведены в таблице 15.

С металлами водород образует (за некоторым исключением) нелетучие соединения, которые являются твердыми веществами немолекулярного строения, поэтому их температуры плавления сравнительно высоки, Такие соединения называются гидридами .

С неметаллами водород образует летучие соединения молекулярного строения (например, фтороводород HF, сероводород аммиак метан При обвитых условиях это газы или летучие жидкости. При растворении в воде водородные соединения галогенов, серы, селена Н теллура образуют кислоты той же формулы, что и сами водородные соединения; При растворении в воде аммиака образуется аммиачная вода, обычно обозначаемая формулой и называемая гидроксидам аммония . Ее также обозначают формулой и называют гидратам аммиака .Помимо соединений с водородом неметаллы образуют с кислородом различные соединения;

С кислородом неметаллы образуют кислотные оксиды, В одних оксидах они проявляют максима льнуло степень окисления, равную номеру группы (например. а в других — более низкую (например,Кислотным оксидам соответствуют кислоты, причем из двух кислородных кислот одного неметалла сильнее та. в которой он проявляет более высокую степень окисления. Например, азотная кислота сильнее азотистой а серная кислота сильнее сернистой

Характеристики кислородных соединений неметаллов

1. Свойства высших оксидов в периодах слева направо постепенно изменяются от основных к кислотным

2. В группах сверху вниз кислотные свойства высших оксидов постепенно ослабевают. Об этом можно судить по свойствам кислот, соответствующих этим оксидам.

Существует несколько оксидов, которые в обычных условиях не реагируют ни с кислотами, им со щелочами. Такие оксиды называются несолеобразующими . Это например, В отличие от них остальные оксиды называют солеобразующими .

Кислородные соединения металлов представлены в таблице 16

Как видите. важнейшие классы химических веществ различаются по разным классификационным признакам. Но по какому бы признаку мы ни выделяли класс веществ. все вещества этого класса обладают общими химическими свойствами. Соединения металлов и неметаллов могут взаимодействовать между собой, так как их свойства противоположны.

Между всеми соединениями металлов и неметаллов существует генетическая связь, с которой вы уже знакомы (рис. 38).

С металлами водород образует нелетучие твердые соединения — гидриды . С неметаллами водород образует летучие соединения молекулярного строения. При обычных условиях это газы или летучие жидкости.

С кислородом неметаллы образуют кислотные оксиды, а металлы — основные оксиды. Соединения металлов и неметаллов могут взаимодействовать между собой, так как их свойства противоположны. Между всеми соединениями металлов и неметаллов существует генетическая связь.

Биологическая роль металлов и неметаллов в жизнедеятельности живых организмов

Хорошо известно, что организмы в своем составе содержат различные химические элементы. В то же время организм человека нуждается в регулярном поступлении элементов извне, т. е. в химически сбалансированной пище. так как недостаток или избыток любого из элементов отрицательно сказывается на здоровье человека.

По современным представлениям из 118 известных элементов незаменимыми являются 22. Углерод, водород, азот и кислород не входят в этот список — они слишком широко природе.

Для удобства остальные элементы подразделяют на две большие группы: макроэлементы. присутствующие в больших количествах и микроэлементы . присутствующие в следовых количествах.

Макроэлементами принято считать те химические элементы, содержание которых в организме более 0,005% массы тела . Содержание макроэлементов в организме достаточно постоянно, но даже сравнительно большие отклонения от нормы совместимы с жизнедеятельностью организма.

К этой группе относятся водород, углерод, кислород, азот, натрий, магний, фосфор, сера, хлор, калий, кальций, Оиэло 96% от массы тела человека приходится на водород (H), кислород (О), углерод (С), азот (N). Они поступают в организм преимущественно в связанном виде с пищей, водой, воздухом и участвуют в большинстве химических реакции, протекающих в организме. Кроме того, эти элементы входят в состав белков, жиров и углеводов (рис. 39). К. этой же группе химических элементов относятся кальций (Са). фосфор (Р). калий (К), натрий (Na),

хлор (Сl). магний (Mg) и сера (S). На их долю в сумме приходится около 4% от массы организма.

Их роль сводится к:

— участию в пластических процессах и построении тканей (например, Р и Са — основные структурные компоненты костей);

— поддержанию кислотно-щелочного равновесия и водно-солевого обмена;

— поддержанию солевого состава крови и участию в структуре формирующих ее элементов:

— участию в структуре и функции большинства ферментативных систем и процессов, протекающих в организме.

Микроэлементами называются частицы, содержащиеся в организме в очень малых количествах . Иx содержание не превышает 0,005% массы тела, а концентрация в тканях— не более 0.000001%.

В связи с этим их часто называют «следовыми» химическими элементами.

В организме каждого взрослого человека присутствует небольшое количество микроэлементов. Несмотря на их малое содержание, микроэлементы чрезвычайно важны.

В таблице 18 приведен список важнейших из них. Кроме того, исследования на животных показали, что в следовых количествах незаменимыми являются кобальт (Со) никель (Ni) мышьяк (As) и кадмий

Макроэлементы сконцентрированы. как правило, в соединительных тканях (мышцы, кости, кровь), входя в состав органических соединений. Они определяют пластический материал основных несущих тканей, а также обеспечивают поддержку основных свойств внутренней среды организма в целом (гомеостаз): значение pH. осмотическое давление, кислотно-щелочное равновесие, устойчивость коллоидных систем в организме.

Микроэлементы неравномерно распределены между тканями н часто обладают сродством к определенному типу тканей и органон. Так, цинк аккумулируется в поджелудочной железе, молибден — в почках, барии — в сетчатке плаза, стронций — в костях, йод — в щитовидной железе (рис. 40. табл. 18).

Знаешь ли ты?

Снижение содержания цинка в плазме крови — обязательное следствие инфаркта миокарда.

Уменьшение содержания лития в крови — показатель гипертонического заболевания.
То, что, например, мышьяк, общеизвестный ял. незаменим для жизни, может вас удивить. Но нет ничего необычного в том, что одни и те же вещества могут приносить и пользу, и вред — все зависит от дозы. Даже поваренная соль может стать ядовитой, если попадет в организм в стишком больших количествах. Пороговое содержание различных элементов для организма человека представлен о в таблице 19.

Наша пища должна быть сбалансирована по необходимым химическим элементам. Правильное питание — залог здоровья каждого человека,

Знаешь ли ты?

Суточное потребление йода жителями Японии в несколько раз выше (за счет продуктов моря), чем в Центральной Азми.

В Казахстане снижено потребление йода, но превышено потребление калия, натрия.

Жители Индии потребляют с гнилей в 3 раза больше магния, марганца. железа, в 2 раза больше мели и калия, чем жители Англии.

В то же время англичане потребляют с пищей в 2 раза больше хрома и кальция.

В Англии потребление с пищей алюминия — в 20 раз, лития — в 10 раз, молибдена — в 3 раз,з ниже, чем в США. а хрома — в б раз. калышя — в 3 раза выше, чем в Германии

В состав клеток живых организмов, в т. ч. и человека, входят органические и неорганические вещества.

Химические элементы и их соединения, необходимые для нормальной жизнедеятельности организма в сравнительно больших количествах. называются .но-кролеиеимлхш , а элементы, требующиеся организмам в крайне малых количествах, — микроэлементами Среди микроэлементов также есть как неметаллы, так и металлы. Как избыток, так и недостаток элементов оказывает отрицательное влияние на организм, а некоторые элементы могут оказывать даже токсичное влияние.

Реакции, происходящие каждый день

  1. Фотосинтез
  2. Анаэробное клеточное дыхание
  3. Аэробное дыхание
  4. Горение
  5. Ржавление
  6. Смешивание продуктов питания
  7. Пищеварение
  8. Кислотно-основное взаимодействие
  9. Использование мыла
  10. Использование батареек

Невидимые чернила:

Китайский император использовал для своих тайных надписей невидимые чернила из рисового отвара, который после высыхания не оставлял никаких видимых следов. Однако если такое письмо слегка смочить слабым спиртовым раствором йода, то появляются синие буквы. Рис содержит крахмал, а крахмал выдает себя полностью при наличии йода.

Услуги по химии:

Лекции по химии:

Лекции по неорганической химии:

Лекции по органической химии:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Неметаллы — общая характеристика. Свойства, получение и применение.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Неметаллы – это химические элементы, которые образуют в свободном состоянии простые вещества, не обладающие физическими и химическими свойствам металлов.

Это 22 элемента Переодической системы: бор B, углерод C, кремний Si, азот N, фосфор P, мышьяк As, кислород O, сера S, селен Se, теллур Te, водород H, фтор F, хлор Cl, бром Br, йод I, астат At; а так же благородные газы: гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe, радон Rn.

Физические свойства
Элементы-неметаллы образуют простые вещества, которые при обычных условиях существуют в разных агрегатных состояниях:

газы (благородные газы: He, Ne, Ar, Kr, Xe, Rn;водород H2, кислород O2, азот N2, фтор F2, хлор Cl2.),

жидкость (бром Br2) ,

твердые вещества ( йод I2, углерод C, кремний Si, сера S, фосфор P и др. ) .

Атомы неметаллов образуют менее плотно упакованную структуру чем металлы, в которой между атомами существуют ковалентные связи. В кристаллической решетке неметаллов, как правило, нет свободных электронов. В связи с этим твердые вещества-неметаллы в отличие от металлов плохо проводят тепло и электричество, не обладают пластичностью.
Получение неметаллов

Способы получения неметаллов отличаются многообразием и специфичностью, общих подходов не существует. Рассмотрим основные способы получения некоторых неметаллов.

Получение галогенов. Самые активные галогены – фтор и хлор – получают электролизом. Фтор – электролизом расплава KHF 2 , хлор – электролизом расплава или раствора хлорида натрия:

2Г — — 2 = Г 2 .

Другие галогены можно также получить электролизом или вытеснением из их солей в растворе с помощью более активного галогена:

Получение водорода. Основной промышленный способ получения водорода – конверсия метана (каталитический процесс):

Получение кремния. Кремний получают восстановлением коксом из кремнезема:

SiO 2 + 2C = Si + 2CO.

Получение фосфора. Фосфор получают восстановлением из фосфата кальция, который входит в состав апатита и фосфорита:

Кислород и азот получают фракционной перегонкой жидкого воздуха.

Сера и углерод встречаются в природе в самородном виде.

Селен и теллур получают из отходов производства серной кислоты, так как эти элементы встречаются в природе вместе с соединениями серы.

Мышьяк получают из мышьяковистого колчедана по сложной схеме превращений, включающей стадии получения оксида и восстановления из оксида углеродом.

Бор получают восстановлением оксида бора магнием.

Химические свойства
1. Окислительные свойства неметаллов проявляются при взаимодействии с металлами
4Al + 3C = Al4C3
2. Неметаллы играют роль окислителя при взаимодействии с водородом
H2 + F2 = 2HF
3 Любой неметалл выступает в роли окислителя в реакциях с теми металлами, которые имеют низкую ЭО
2P + 5S = P2S5
4. Окислительные свойства проявляются в реакциях с некоторыми сложными веществами
CH4 + 2O2 = CO2 + 2H2O
5. Неметаллы могут играть роль окислителя в реакциях со сложными веществами
2FeCl2 + Cl2 = 2FeCl3
6. Все неметаллы выступают в роли восстановителей при взаимодействии с кислородом
4P + 5O2 = 2P2O5
7. Многие неметаллы выступают в роли восстановителей в реакциях со сложными веществами-окислителями
S + 6HNO3 = H2SO4 + 6NO2 + 2H2O
8. Наиболее сильные восстановительные свойства имеют углерод и водород
ZnO + C = Zn + CO;
CuO + H2 = Cu + H2O
9. Существуют и такие реакции, в которых один и тот же неметалл является одновременно и окислителем, и восстановителем. Это реакции самоокисления-самовосстановления (диспропорционирования)
Cl2 + H2O =HCl + HClO

Водород используется в химической промышленности для синтеза аммиака, хлороводорода и метанола, применяется для гидрогенизации жиров. Используется в качестве восстановителя при производстве многих металлов, например, молибдена и вольфрама, из их соединений.

Хлор применяют для производства соляной кислоты, винилхлорида, каучука и многих органических веществ и пластмасс, в текстильной и бумажной промышленности используют в качестве отбеливающего средства, в быту – для обеззараживания питьевой воды.

Бром и йод используют в синтезе полимерных материалов, для приготовления лекарственных препаратов и др.

Кислород применяется при сжигании топлива, при выплавке чугуна и стали, для сварки металлов, необходим для жизнедеятельности организмов.

Сера используется для производства серной кислоты, изготовления спичек, пороха, для борьбы с вредителями сельского хозяйства и лечения некоторых болезней, в производстве красителей, взрывчатых веществ, люминофоров.

Азот и фосфор применяются при производстве минеральных удобрений, азот применяется при синтезе аммиака, для создания инертной атмосферы в лампах, используется в медицине. Фосфор применяется при производстве фосфорной кислоты.

Алмаз используется при обработке твердых изделий, в буровых работах и ювелирном деле, графит – для изготовления электродов, тиглей для выплавки металлов, в производстве карандашей, резины и др.

Химические свойства неметаллов

1. Водород проявляет свойства окислителя и свойства восстановителя. Поэтому водород реагирует с металлами и неметаллами.

1.1. С активными металлами водород реагирует с образованием гидридов:

2Na + H2 → 2NaH

1.2. В специальных условиях водород реагирует с серой с образованием бинарного соединения сероводорода:

1.3. Водород не реагирует с кремнием.

1.4. С азотом водород реагирует при нагревании под давлением в присутствии катализатора с образованием аммиака:

1.5. В специальных условиях водород реагирует с углеродом.

1.6. Водород горит, взаимодействует с кислородом со взрывом:

2. Водород взаимодействует со сложными веществами:

2.1. Восстанавливает металлы из основных и амфотерных оксидов. Восстановить из оксида водородом можно металлы, расположенные в электрохимическом ряду напряжений после алюминия. При этом образуются металл и вода.

Например, водород взаимодействует с оксидом цинка с образованием цинка и воды:

ZnO + H2 → Zn + H2O

Также водород восстанавливает медь из оксида меди:

СuO + H2 → Cu + H2O

Водород восстанавливает оксиды некоторых неметаллов.

Например , водород взаимодействует с оксидом кремния:

2.2. С органическими веществами водород вступает в реакции присоединения (реакции гидрирования).

Химические свойства галогенов

Химическая активность галогенов увеличивается снизу вверх – от астата к фтору.

1. Галогены проявляют свойства окислителей . Галогены реагируют с металлами и неметаллами .

1.1. Галогены не горят на воздухе. Фтор окисляет кислород с образованием фторида кислорода:

1.2. При взаимодействии галогенов с серой образуются галогениды серы:

1.3. При взаимодействии фосфора и углерода с галогенами образуются галогениды фосфора и углерода:

1.4. При взаимодействии с металлами галогены проявляют свойства окислителей, образуя галогениды.

Например , железо реагирует с галогенами с образованием галогенидов. При этом фтор, хлор и бром образуются галогениды железа (III), а c йодом — соединение железа (II):

3Cl2 + 2Fe → 2FeCl3

Аналогичная ситуация с медью : фтор, хлор и бром окисляют медь до галогенидов меди (II),а йод до йодида меди (I):

I2 + 2Cu → 2CuI

Активные металлы бурно реагируют с галогенами, особенно с фтором и хлором (горят в атмосфере фтора или хлора).

Еще пример : алюминий взаимодействует с хлором с образованием хлорида алюминия:

3Cl2 + 2Al → 2AlCl3

1.5. Водород горит в атмосфере фтора:

С хлором водород реагирует только при нагревании или освещении. При этом реакция протекает со взрывом:

Бром также реагирует с водородом с образованием бромоводорода:

Взаимодействие йода с водородом происходит только при сильном нагревании, реакция протекает обратимо, с поглощением теплоты (эндотермическая):

1.6. Галогены реагируют с галогенами. Более активные галогены окисляют менее активные.

Например , фтор окисляет хлор, бром и йод:

2. Со сложными веществами галогены реагируют, также проявляя преимущественно окислительные свойства. Галогены охотно диспропорционируют при растворении в воде или в щелочах.

2.1. При растворении в воде хлор и бром частично диспропорционируют, повышая и понижая степень окисления. Фтор окисляет воду.

Например , хлор при растворении в холодной воде диспропорционирует до ближайших стабильных степеней окисления (+1 и -1), образует при этом соляную кислоту и хлорноватистую кислоту (хлорная вода):

Cl2 + H2O ↔ HCl + HClO

При растворении в горячей воде хлор диспропорционирует до степеней окисления -1 и +5, образуя соляную кислоту и хлорную кислоту:

Фтор реагирует с водой со взрывом:

2.2. При растворении в щелочах хлор, бром и йод диспропорционируют с образованием различных солей. Фтор окисляет щелочи.

Например , хлор реагирует с холодным раствором гидроксидом натрия:

При взаимодействии с горячим раствором гидроксида натрия образуются хлорид и хлорат:

Еще пример : хлор растворяется в холодном растворе гидроксида кальция:

2.3. Более активные галогены вытесняют менее активные галогены из солей и галогеноводородов.

Например , хлор вытесняет йод и бром из раствора йодида калия и бромида калия соответственно:

Cl2 + 2NaI → 2NaCl + I2

Cl2 + 2NaBr → 2NaCl + Br2

Еще одно свойство: более активные галогены окисляют менее активные.

Например , фтор окисляет хлор с образованием фторида хлора (I):

Cl2 + F2 → 2Cl + F –

В свою очередь, хлор окисляет йод. При этом в растворе образуется соляная кислота и йодная кислота:

2.4. Галогены проявляют окислительные свойства, взаимодействуют с восстановителями.

Например , хлор окисляет сероводород:

Cl2 + H2S → S + 2HCl

Хлор также окисляет сульфиты:

Также галогены окисляют пероксиды:

Или, при нагревании или на свету, воду:

2Cl2 + 2H2O → 4HCl + O2 (на свету или кип.)

Химические свойства кислорода

ри нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

1. Кислород проявляет свойства окислителя (с большинством химических элементов) и свойства восстановителя (только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами , и с неметаллами . Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

1.2. Кислород реагирует с серой и кремнием с образованием оксидов:

1.3. Фосфор горит в кислороде с образованием оксидов:

При недостатке кислорода возможно образование оксида фосфора (III):

Но чаще фосфор сгорает до оксида фосфора (V):

1.4. С азотом кислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000 о С), образуя оксид азота (II):

N2 + O2→ 2NO

1.5. В реакциях с щелочноземельными металлами, литием и алюминием кислород также проявляет свойства окислителя. При этом образуются оксиды:

2Ca + O2 → 2CaO

Однако при горении натрия в кислороде преимущественно образуется пероксид натрия:

2Na + O2→ Na2O2

А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

K + O2→ KO2

Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

Цинк окисляется до оксида цинка (II):

2Zn + O2→ 2ZnO

Железо , в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

2Fe + O2→ 2FeO

4Fe + 3O2→ 2Fe2O3

3Fe + 2O2→ Fe3O4

1.6. При нагревании с избытком кислорода графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Кислород взаимодействует со сложными веществами:

2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды . При этом образуются оксиды:

4FeS + 7O2→ 2Fe2O3 + 4SO2

Ca3P2 + 4O2→ 3CaO + P2O5

2.2. Кислород окисляет бинарные соединения неметаллов:

  • летучие водородные соединения ( сероводород, аммиак, метан, силан гидриды . При этом также образуются оксиды:

2H2S + 3O2→ 2H2O + 2SO2

Аммиак горит с образованием простого вещества, азота:

4NH3 + 3O2→ 2N2 + 6H2O

Аммиак окисляется на катализаторе (например, губчатое железо) до оксида азота (II):

4NH3 + 5O2→ 4NO + 6H2O

  • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора ( сероуглерод, сульфид фосфора и др.):

CS2 + 3O2→ CO2 + 2SO2

  • некоторые оксиды элементов в промежуточных степенях окисления ( оксид углерода (II), оксид железа (II) и др.):

2CO + O2→ 2CO2

2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

Например , кислород окисляет гидроксид железа (II):

Кислород окисляет азотистую кислоту :

2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

CH4 + 2O2→ CO2 + 2H2O

2CH4 + 3O2→ 2CO + 4H2O

CH4 + O2→ C + 2H2O

Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

Химические свойства серы

В нормальных условиях химическая активность серы невелика: при нагревании сера активна, и может быть как окислителем, так и восстановителем.

1. Сера проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому сера реагирует с металлами и неметаллами .

1.1. При горении серы на воздухе образуется оксид серы (IV) :

1.2. При взаимодействии серы с галогенами (со всеми, кроме йода) образуются галогениды серы:

1.3. При взаимодействии фосфора и углерода с серой образуются сульфиды фосфора и сероуглерод:

2S + C → CS2

1.4. При взаимодействии с металлами сера проявляет свойства окислителя, продукты реакции называют сульфидами. С щелочными металлами сера реагирует без нагревания, а с остальными металлами (кроме золота и платины) – только при нагревании.

Например , железо и ртуть реагируют с серой с образованием сульфидов железа (II) и ртути:

S + Fe → FeS

S + Hg → HgS

Еще пример : алюминий взаимодействует с серой с образованием сульфида алюминия:

1.5. С водородом сера взаимодействует при нагревании с образованием сероводорода:

2. Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства. Сера диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителями сера окисляется до оксида серы (IV) или до серной кислоты (если реакция протекает в растворе).

Например , азотная кислота окисляет серу до серной кислоты:

Серная кислота также окисляет серу. Но, поскольку S +6 не может окислить серу же до степени окисления +6, образуется оксид серы (IV):

Соединения хлора, например , бертолетова соль , также окисляют серу до +4:

S + 2KClO3 → 3SO2 + 2KCl

Взаимодействие серы с сульфитами (при кипячении) приводит к образованию тиосульфатов:

2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида.

Например , сера реагирует с гидроксидом натрия:

При взаимодействии с перегретым паром сера диспропорционирует:

Химические свойства азота

При нормальных условиях азот химически малоактивен.

1. Азот проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому азот реагирует с металлами и неметаллами .

1.1. Молекулярный азот при обычных условиях с кислородом не реагирует. Реагирует с кислородом только при высокой температуре (2000 о С), на электрической дуге (в природе – во время грозы) :

Процесс эндотермический, т.е. протекает с поглощением теплоты.

1.2. При сильном нагревании (2000 о С или действие электрического разряда) азот реагирует с серой , фосфором, мышьяком, углеродом с образованием бинарных соединений:

2С + N2 → N≡C–C≡N

1.3. Азот взаимодействует с водородом при высоком давлении и высокой температуре ,в присутствии катализатора. При этом образуется аммиак:

Этот процесс экзотермический, т.е. протекает с выделением теплоты.

1.4. Азот реагирует с активными металлами: с литием при комнатной температуре, кальцием, натрием и магнием при нагревании. При этом образуются бинарные соединения-нитриды.

Например , литий реагирует с азотом с образованием нитрида лития:

2. Со сложными веществами азот практически не реагирует из-за крайне низкой реакционной способности.

Взаимодействие возможно только в жестких условиях с активными веществами, например, сильными восстановителями.

Например , азот окисляет гидрид лития:

Химические свойства фосфора

При нормальных условиях фосфор довольно химически активен.

1. Фосфор проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому фосфор реагирует с металлами и неметаллами .

1.1. При взаимодействии с кислородом воздуха образу

ются оксиды – ангидриды соответствующих кислот :

Горение белого фосфора:

Горение красного фосфора:

1.2. При взаимодействии фосфора с галогенами образуются галогениды с общей формулой PHal3 и PHal5:

Фосфор реагирует с бромом:

1.3. При взаимодействии фосфора с серой образуются сульфиды:

1.4. При взаимодействии с металлами фосфор проявляет свойства окислителя, продукты реакции называют фосфидами.

Например , кальций и магний реагируют с фосфором с образованием фосфидов кальция и магния:

Еще пример : натрий взаимодействует с фосфором с образованием фосфида натрия:

P + 3Na → Na3P

1.5. С водородом фосфор непосредственно не взаимодействует.

2. Со сложными веществами фосфор реагирует, проявляя окислительные и восстановительные свойства. Фосфор диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителями фосфор окисляется до оксида фосфора (V) или до фосфорной кислоты.

Например , азотная кислота окисляет фосфор до фосфорной кислоты:

Серная кислота также окисляет фосфор:

Соединения хлора, например , бертолетова соль , также окисляют фосфор:

Реакция красного фосфора с бертолетовой солью. Этот процесс заложен в принципе возгорания спички при трении её о шершавую поверхность коробка.

Некоторые металлы-сильные окислители также окисляют фосфор. Например , оксид серебра (I) :

2.2. При растворении в щелочах фосфор диспропорционирует до гипофосфита и фосфина.

Например , фосфор реагирует с гидроксидом калия:

Или с гидроксидом кальция:

Химические свойства углерода

При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.

1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами , и с неметаллами .

1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:

1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:

C + 2S → CS2

C + Si → SiC

1.3. Углерод не взаимодействует с фосфором .

При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:

1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:

2С + N2 → N≡C–C≡N

1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:

2C + Ca → CaC2

1.6. При нагревании с избытком воздуха графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Углерод взаимодействует со сложными веществами:

2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:

C 0 + H2 + O → C +2 O + H2 0

2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов . При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.

Например , углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:

ZnO + C → Zn + CO

Также углерод восстанавливает железо из железной окалины:

4С + Fe3O4 → 3Fe + 4CO

При взаимодействии с оксидами активных металлов углерод образует карбиды.

Например , углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:

3С + СаО → СаС2 + СО

2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:

2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:

2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями , в которых содержатся неметаллы с высокой степенью окисления.

Например , углерод восстанавливает сульфат натрия до сульфида натрия:

Химические свойства кремния

При нормальных условиях кремний существует в виде атомного кристалла, поэтому химическая активность кремния крайне невысокая.

1. Кремний проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (при взаимодействии с элементами, расположенными выше и правее). Поэтому кремний реагирует и с металлами , и с неметаллами .

1.1. При обычных условиях кремний реагирует с фтором с образованием фторида кремния (IV):

При нагревании кремний реагирует с хлором, бромом, йодом :

1.2. При сильном нагревании (около 2000 о С) кремний реагирует с углеродом с образованием бинарного соединения карбида кремния (карборунда):

C + Si → SiC

При температуре выше 600°С взаимодействует с серой:

Si + 2S → SiS2

1.3. Кремний не взаимодействует с водородом .

1.4. С азотом кремний реагирует в очень жестких условиях:

1.5. В реакциях с активными металлами кремний проявляет свойства окислителя. При этом образуются силициды:

2Ca + Si → Ca2Si

Si + 2Mg → Mg2Si

1.6. При нагревании выше 400°С кремний взаимодействует с кислородом :

2. Кремний взаимодействует со сложными веществами:

2.1. В водных растворах щелочей кремний растворяется с образованием солей кремниевой кислоты. При этом щелочь окисляет кремний.

2.2. Кремний не взаимодействует с водными растворами кислот, но аморфный кремний растворяется в плавиковой кислоте с образованием гексафторкремниевой кислоты:

При обработке кремния безводным фтороводородом комплекс не образуется:

С хлороводородом кремний реагирует при 300 °С, с бромоводородом – при 500 °С.

2.3. Кремний растворяется в смеси концентрированных азотной и плавиковой кислот :

3Si + 4HNO3 + 12HF → 3SiF4 + 4NO + 8H2O


источники:

http://infourok.ru/nemetalli-obschaya-harakteristika-svoystva-poluchenie-i-primenenie-1347156.html

http://chemege.ru/ximicheskie-svojstva-nemetallov/