Сравнение методов решения систем линейных уравнений

Системы уравнений

Система уравнений — это группа уравнений, в которых одни и те же неизвестные обозначают одни те же числа. Чтобы показать, что уравнения рассматриваются как система, слева от них ставится фигурная скобка:

x — 4y = 2
3x — 2y = 16

Решить систему уравнений — это значит, найти общие решения для всех уравнений системы или убедиться, что решения нет.

Чтобы решить систему уравнений, нужно исключить одно неизвестное, то есть из двух уравнений с двумя неизвестными составить одно уравнение с одним неизвестным. Исключить одно из неизвестных можно тремя способами: подстановкой, сравнением, сложением или вычитанием.

Способ подстановки

Чтобы решить систему уравнений способом подстановки, нужно в одном из уравнений выразить одно неизвестное через другое и результат подставить в другое уравнение, которое после этого будет содержать только одно неизвестное. Затем находим значение этого неизвестного и подставляем его в первое уравнение, после этого находим значение второго неизвестного.

Рассмотрим решение системы уравнений:

x — 4y = 2
3x — 2y = 16

Сначала найдём, чему равен x в первом уравнении. Для этого перенесём все члены уравнения, не содержащие неизвестное x, в правую часть:

Так как x, на основании определения системы уравнений, имеет такое же значение и во втором уравнении, то подставляем его значение во второе уравнение и получаем уравнение с одним неизвестным:

3x— 2y = 16;
3( 2 + 4y )— 2y = 16.

Решаем полученное уравнение, чтобы найти, чему равен y. Как решать уравнения с одним неизвестным, вы можете посмотреть в соответствующей теме.

3(2 + 4y) — 2y = 16;
6 + 12y — 2y = 16;
6 + 10y = 16;
10y = 16 — 6;
10y = 10;
y = 10 : 10;
y = 1.

Мы определили что y = 1. Теперь, для нахождения численного значения x, подставим значение y в преобразованное первое уравнение, где мы ранее нашли, какому выражению равен x:

x = 2 + 4y = 2 + 4 · 1 = 2 + 4 = 6.

Способ сравнения

Способ сравнения — это частный случай подстановки. Чтобы решить систему уравнений способом сравнения, нужно в обоих уравнениях найти, какому выражению будет равно одно и то же неизвестное и приравнять полученные выражения друг к другу. Получившееся в результате уравнение позволяет узнать значение одного неизвестного. С помощью этого значения затем вычисляется значение второго неизвестного.

Например, для решение системы:

x — 4y = 2
3x — 2y = 16

найдём в обоих уравнениях, чему равен y (можно сделать и наоборот — найти, чему равен x):

x — 4y = 23x — 2y = 16
-4y = 2 — x-2y = 16 — 3x
y = (2 — x) : — 4y = (16 — 3x) : -2

Составляем из полученных выражений уравнение:

2 — x=16 — 3x
-4-2

Решаем уравнение, чтобы узнать значение x:

2 — x· (-4) =16 — 3x· (-4)
-4-2
2 — x = 32 — 6x
x + 6x = 32 — 2
5x = 30
x = 30 : 5
x = 6

Теперь подставляем значение x в первое или второе уравнение системы и находим значение y:

x — 4y = 23x — 2y = 16
6 — 4y = 23 · 6 — 2y = 16
-4y = 2 — 6-2y = 16 — 18
-4y = -4-2y = -2
y = 1y = 1

Способ сложения или вычитания

Чтобы решить систему уравнений способом сложения, нужно составить из двух уравнений одно, сложив левые и правые части, при этом одно из неизвестных должно быть исключено из полученного уравнения. Неизвестное можно исключить, уравняв при нём коэффициенты в обоих уравнениях.

x — 4y = 2
3x — 2y = 16

Уравняем коэффициенты при неизвестном y, умножив все члены второго уравнения на -2:

x — 4y = 2
-6x + 4y = -32

Теперь сложим по частям оба уравнения, чтобы получить уравнение с одним неизвестным:

+x — 4y = 2
-6x + 4y = -32
-5x = -30

Находим значение x (x = 6). Теперь, подставив значение x в любое уравнение системы, найдём y = 1.

Если уравнять коэффициенты у x, то, для исключения этого неизвестного, нужно было бы вычесть одно уравнение из другого.

Уравняем коэффициенты при неизвестном x, умножив все члены первого уравнения на 3:

(x — 4y) · 3 = 2 · 3

3x — 12y = 6
3x — 2y = 16

Теперь вычтем по частям второе уравнение из первого, чтобы получить уравнение с одним неизвестным:

3x — 12y = 6
3x — 2y = 16
-10y = -10

Находим значение y (y = 1). Теперь, подставив значение y в любое уравнение системы, найдём x = 6:

3x — 2y = 16
3x — 2 · 1 = 16
3x — 2 = 16
3x = 16 + 2
3x = 18
x = 18 : 3
x = 6

Для решения системы уравнений, рассмотренной выше, был использован способ сложения, который основан на следующем свойстве:

Любое уравнение системы можно заменить на уравнение, получаемое путём сложения (или вычитания) уравнений, входящих в систему. При этом получается система уравнений, имеющая те же решения, что и исходная.

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Содержание:

Методы решения систем линейных алгебраических уравнений (СЛАУ)

Метод Крамера

Определение: Системой линейных алгебраических уравнений (СЛАУ) называется выражение

Определение: Определитель, составленный из коэффициентов при неизвестных, называется главным определителем системы

Крамер предложил следующий метод решения СЛАУ: умножим главный определитель на для этого умножим все элементы первого столбца на эту неизвестную:

Второй столбец умножим на третий столбец — на -ый столбец — на и все эти произведения прибавим к первому столбцу, при этом произведение не изменится:

Согласно записи СЛАУ первый столбец получившегося определителя представляет собой столбец свободных коэффициентов, т.е.

Определение: Определитель называется первым вспомогательным определителем СЛАУ.

Поступая аналогично тому, как описано выше, найдем все вспомогательные определители СЛАУ:

31. Для того чтобы найти вспомогательный определитель i, надо в главном определителе СЛАУ заменить столбец i на столбец свободных коэффициентов.

Определение: Полученные выше соотношения называются формулами Крамера. Используя формулы Крамера, находят неизвестные величины Проанализируем полученные формулы:

  • если главный определитель системы отличен от нуля (), то система имеет единственное решение;
  • если главный определитель системы равен нулю (), а хотя бы один из вспомогательных определителей отличен от нуля ( или , или, . или ), то система не имеет решений (деление на нуль запрещено);
  • если все определители системы равны нулю (), то система имеет бесчисленное множество решений.

Пример:

Решить СЛАУ методом Крамера

Решение:

Прежде всего, обращаем внимание на то, что в последнем уравнении переменные записаны в неправильном порядке, в этом случае говорят, что СЛАУ записана в ненормализованном виде. Нормализуем СЛАУ, для чего запишем неизвестные в последнем уравнении системы в правильном порядке, чтобы одноименные неизвестные были записаны друг под другом

Найдем главный определитель СЛАУ (раскрываем по первой строке)

Так как главный определитель системы отличен от нуля, то СЛАУ имеет единственное решение. Найдем три вспомогательных определителя

Воспользуемся формулами Крамера

Замечание: После нахождения решения СЛАУ надо обязательно провести проверку, для чего найденные числовые значения неизвестных подставляется в нормализованную систему линейных алгебраических уравнений.

Выполним проверку Отсюда видно, что СЛАУ решена верно.

Матричный способ решения СЛАУ

Для решения СЛАУ матричным способом введем в рассмотрение матрицу, составленную из коэффициентов при неизвестных матpицы-столбцы неизвестных и свободных коэффициентов

Тогда СЛАУ можно записать в матричном виде Матричный способ решения СЛАУ состоит в следующем: умножим слева матричное уравнение на обратную матрицу к матрице А, получим в силу того, что произведение найдем Таким образом, для нахождения неизвестных матричным способом, надо найти обратную к А матрицу после чего надо умножить эту матрицу на матрицу-столбец свободных коэффициентов.

Пример:

Решить СЛАУ матричным способом

Решение:

Введем в рассмотрение следующие матрицы

Найдем матрицу (см. Лекцию № 2): найдем детерминант матрицы А.

Пример:

Решение:

Найдем алгебраические дополнения всех элементов Запишем обратную матрицу (в правильности нахождения обратной матрицы убедиться самостоятельно). Подействуем пай денной матрицей на матрицу-столбец свободных коэффициентов В:

Отсюда находим, что х = 1; y = l; z = l.

Метод Гаусса

Метод Гаусса или метод исключения неизвестных состоит в том, чтобы за счет элементарных преобразований привести СЛАУ к треугольному виду. Покажем использование расширенной матрицы, составленной из коэффициентов при неизвестных и расширенной за счет столбца свободных коэффициентов, для приведения СЛАУ к треугольному виду на примере системы, рассматриваемой в этой лекции. Расширенная матрица для СЛАУ имеет вид:

Замечание: В методе Гаусса желательно, чтобы первая строка расширенной матрицы начиналась с единицы.

Обменяем в расширенной матрице первую и вторую строки местами, получим Приведем матрицу к треугольному виду, выполнив следующие преобразования: умножим элементы первой строки на (-2) и прибавим к соответствующим элементам второй строки Разделим все элементы второй строки на (-5), получим эквивалентную матрицу

Умножим элементы первой строки на (—1) и прибавим к соответствующим элементам третьей строки Разделим все элементы третьей строки на (-3), получим Таким образом, эквивалентная СЛАУ имеет вид (напомним, что первый столбец это коэффициенты при неизвестной х, второй — при неизвестной у, третий — при неизвестной z, а за вертикальной чертой находится столбец свободных коэффициентов):

Из первого уравнения находим, что х = 1.

Вывод: Из вышеизложенного материала следует, что вне зависимости от

способа решения СЛАУ всегда должен получаться один и тот же ответ.

Замечание: После нахождения решения СЛАУ надо обязательно выполнить проверку, то есть подставить полученные значения неизвестных в заданную СЛАУ и убедиться в тождественности левой части всех равенств системы соответствующим правым частям. Отметим, что задание СЛАУ всегда верно, то есть, если проверка показывает нарушение оговоренной тождественности, то надо искать ошибку в проведенных вычислениях.

Ранг матрицы. Теорема Кронекера-Капелли

Определение: Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы.

Если то среди всевозможных миноров этой матрицы есть хотя бы один минор порядка r, который отличен от нулю, а все миноры порядков больших, чем r, равны нулю.

При вычислении ранга необходимо начинать вычислять миноры 2 порядка, затем миноры 3 порядка и так далее, пока не будут найдены миноры, обращающиеся в нуль. Если все миноры порядка p равны нулю, то и все миноры, порядок которых больше p, равны нулю.

Пример:

Найти ранг матрицы

Решение:

Очевидно, что среди миноров второго порядка есть миноры отличные от нуля, например, среди миноров третьего порядка также есть миноры, которые не равны нулю, например, Очевидно, что определитель четвертого порядка равен нулю, так как он будет содержать строку, состоящую из одних нулей (см. свойство для определителей). Следовательно, ранг матрицы А равен 3.

Теорема Кронекера-Капелли (критерий совместности СЛАУ). Для совместности системы линейных алгебраических уравнений (СЛАУ) необходимо и достаточно, чтобы ранг расширенной матрицы совпадал с рангом основной матрицы, составленной из коэффициентов при неизвестных величинах.

Следствия из теоремы Кронекера — Капелли

Следствие: Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение (то есть она определенная).

Следствие: Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений (т.е. она неопределенная).

В случае неопределенной системы решения ищут следующим образом: выбираются главные неизвестные, число которых равно рангу, а остальные неизвестные считаются свободными; далее главные неизвестные выражаются через свободные и получают множество решений, зависящих от свободных неизвестных. Это множество решений называется общим решением системы. Придавая свободным неизвестным различные произвольные значения, получим бесчисленное множество решений, каждое из которых называется частным решением системы.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Экстремум функции

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Исследование различных методов решения систем уравнений

Решение систем уравнений важно не только в плане содержания курса математики; они используются в физике, химии, при решении технических, инженерных задач, при работе с моделями экономических, социальных, биологических и прочих явлений и процессов. По статистике, представленной на сайте Федерального института педагогических измерений решили систему уравнений (задание № 21) на 2 балла 24%, на 1 балл – 35% обучающихся. Остальные не справились с этим заданием.

Всё отмеченное указывает на то, что учащиеся испытывают трудности при решении систем уравнений. Я учусь в 9 классе и мне хотелось бы набрать хорошие баллы по математике на ОГЭ. Поэтому мы решили проанализировать методы решения задач систем уравнений, и нами была выдвинута гипотеза: если ученик будет владеть несколькими методами решения систем уравнений, то он сможет при решении системы выбрать наиболее рациональный метод.

Цель: исследовать различные методы решения систем уравнений.

Для достижения поставленной цели решались следующие задачи:

1. Изучить теоретический материал по данной теме.

2. Изучить метод Крамера для решения систем уравнений.

3. Сравнить различные методы решения систем уравнений.

4. Проверить экспериментальным путем, какой метод решения систем уравнений наиболее рациональный.

Методы исследование: опрос, анкетирование, анализ, сравнение и обобщение результатов.

Вывод: графический метод решения систем уравнений красив, но ненадёжен. Во -первых, потому, что графики уравнений мы сумеем построить далеко не всегда. Во-вторых, даже если графики уравнений удалось построить, точки пересечения могут быть не такими «хорошими». По нашему мнению, учащийся должен владеть несколькими методами решения систем уравнений, для того чтобы не только воспользоваться самым рациональным, но и для проверки точности вычисления.


источники:

http://www.evkova.org/metodyi-resheniya-sistem-linejnyih-algebraicheskih-uravnenij-slau

http://nsportal.ru/ap/library/nauchno-tekhnicheskoe-tvorchestvo/2018/01/09/issledovanie-razlichnyh-metodov-resheniya