Стационарное уравнение шредингера для чего нужно

Стационарное уравнение Шредингера

Вы будете перенаправлены на Автор24

Основное уравнение квантовой механики было предложено Э. Шредингером в $1926$ г. Его значение в квантовой физике аналогично значению уравнению движения И. Ньютона. Уравнение Шредингера не выводится, оно постулируется. Его истинность доказывается тем, что полученные с его помощью результаты хорошо согласуются с экспериментами, проводимыми в рамках атомной и ядерной физики. Уравнение Шредингера можно представить в следующем виде:

где $\hbar =\frac<2>=1,05\cdot <10>^<-34>Дж\cdot с\ $- постоянная Планка, $m$ — масса частицы, $U\left(x,y,z,t\right)$- потенциальная энергия частицы в силовом поле в котором перемещается частица, $\triangle =\frac<\partial^2><\partial x^2>+\frac<\partial^2><\partial y^2>+\frac<\partial^2><\partial z^2>$ — оператор Лапласа, $\Psi=\Psi(x,y,z,t)$ — волновая функция частицы, $i=\sqrt<-1>$ — мнимая единица.

Уравнение (1) является справедливым для любой частицы, которая движется со скоростью много меньшей скорости света ($v\ll c,\ где\ c\ $— скорость света в вакууме). Уравнение Шредингера дополняют условиями, которые накладываются на волновую функцию $\Psi\ (x,y,z,t)$:

Данная функция должна быть конечной, непрерывной и однозначной.

Функция $<\left|\Psi\right|>^2$ должна быть интегрируемой, что означает, интеграл $\iiint\limits^<\infty >_<-\infty ><<\left|\Psi\right|>^2dxdydz>$ должен быть конечным. В самом простом случае данное условие сводится к условию нормировки вероятностей. Это условие связано с тем, что физическим смыслом обладает не сама волновая функция, а $<\left|\Psi\right|>^2$.

Значение вышеперечисленных условий в том, что с их помощью не решая уравнения Шредингера, только изучая возможные решения, можно делать ряд важных выводов об энергии и других параметрах рассматриваемой частицы.

Готовые работы на аналогичную тему

Уравнение (1) называют временн$\acute<ы>$м уравнением Шредингера, так как оно содержит производную от волновой функции по времени.

Стационарное уравнение Шредингера

Для большого числа явлений, которые происходят в микромире можно использовать стационарную волновую функцию (независящую от времени) и соответственно стационарное уравнение Шредингера. Такое уравнение имеет смысл для задач, в которых потенциальная энергия не зависит от времени ($U=U\left(x,y,z\right)$).

Решение уравнения (1) найдем в виде:

Подставим выражение (2) в уравнение Шредингера (1), получим:

Разделим обе части выражения (3) на произведение функций $\varphi \Psi$, имеем:

В уравнении (4) левая часть — функция только координат, правая — только времени. Равенство возможно только в случае, если обе части уравнения равны некоторой постоянной. Обозначим ее $-E$ и запишем:

Уравнение (6) называют стационарным уравнением Шредингера. Оно является важным уравнением в квантовой механике и играет основную роль в атомной физике. Функции $\Psi$, которые удовлетворяют уравнению Шредингера при известной U, называют собственными функциями. Величины $E$ при которых существуют решения уравнения Шредингера (6) называют собственными значениями.

Уравнение (5) можно проинтегрировать. Получим:

где $<\varphi >_0=\varphi_0\left(0\right)$- значение $\varphi (t)$ в начальный момент времени (t=0).

Для определения смысла величины $E$ в стационарном уравнении Шредингера уравнение (6) сравнивают с волновым уравнением:

где $v^2_$ — фазовая скорость волн в квадрате. Для синусоидальных волн ($S=A\left(r\right)e^<-i2\pi \nu (t-\frac>)>,\ \ где\ \nu \ —\ частота\ волны$):

уравнение (8) записывается как:

К волнам де Бройля, которые связаны с движущимися частицами, можно применять уравнение (9). Для длины волны де Бройля известно соотношение:

где $v_$- фазовая скорость волн де Бройля, $\nu $ — частота волн де Бройля. Подставим вместо $\frac<\nu >>$ в уравнение (10) в соответствии с (11) величину $\frac$, вместо $S$ волновую функцию, получим:

$\frac<2>=E-U$ — кинетическая энергия частицы, где $E$ — ее полная энергия. Выражение $\frac<4<\pi >^2m^2v^2>$ перепишем как:

Значит в уравнении (12) имеем:

Мы получили уравнение (14) тождественное со стационарным уравнением Шредингера. Рассуждения, приведенные выше, подчеркивают волновой характер уравнения Шредингера. Надо отметить, что представление полной энергии ($E$) как суммы потенциальной и кинетической энергии в квантовой механике имеет ограниченный характер.

Уравнение Шредингера находится в согласии с предположением о связи полной энергии ($E$) частицы с частотой волн де Бройля. Решение уравнения Шредингера можно записать в виде:

Так, состояние частицы в рассматриваемый момент времени можно описать периодической функцией времени, имеющей циклическую частоту ($\omega =\frac<\hbar >$), которая определена полной энергией частицы.

Задание: На пути электронного пучка, имеющего энергию $E$, расположен потенциальный барьер высоты $U$ ($U >E$) (рис.1). Какова относительная вероятность пребывания электрона в области $2$ на расстоянии x от границы областей $1$ и $2$ ($\epsilon$)?

Решение:

В задаче следует найти отношение плотности вероятности нахождения электрона в точке $x$ к плотности вероятности его нахождения на границе областей. В задаче имеется высокий потенциальный барьер бесконечной ширины. Все падающие на барьер электроны отражаются от него, но существует вероятность, что электрон попадет в область $2$. Для нахождения вероятности обнаружения электрона в области $2$ надо решить уравнение Шредингера вида:

Для одномерного случая, который мы имеем для нашей задачи уравнение (1.1) примет вид:

Решение данного уравнения функция:

где $C$ и $D$ постоянные. Однако, из (1.3) при $x\to \infty ,$ то$\ \Psi\to \infty $, что не допустимо, следовательно, $C=0$. Получаем:

Используя (1.4) найдем плотность вероятности нахождения частицы в точке x как:

Плотность вероятности, исходя из (1.5) на границе $^2=D^2$. Тогда относительная вероятность ($\epsilon$) равна:

Задание: Запишите уравнение Шредингера для электрона в водородоподобном атоме.

Решение:

Для написания необходимого уравнения следует вспомнить формулу, определяющую потенциальную энергию, которой обладает электрон в водородоподобном атоме, находящийся на орбите радиуса r:

Уравнение для электрона в водородоподобном атоме должно быть стационарным и его можно записать как:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 06 05 2021

Уравнение Шрёдингера

Дуальная корпускулярно-волновая природа квантовых частиц описывается дифференциальным уравнением.

Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени Эрвин Шрёдингер выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что всё это чушь? Или мы тут все не знаем, что волны — они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики — и с блеском справился с этой задачей.

Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) — в такой передаче энергии участвуют частицы — или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа — корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений — волновыми уравнениями. Все без исключения волны — волны океана, сейсмические волны горных пород, радиоволны из далеких галактик — описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. Квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу — в самой простой форме (так называемое «одномерное стационарное уравнение Шрёдингера»). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой ψ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное — примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):

где x — расстояние, h — постоянная Планка, а m, E и U — соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера — Вернера Гейзенберга (см. Принцип неопределенности Гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий — то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.

Однако представить себе и принять, что нечто вроде электрона ведёт себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч — это частица, звук — это волна, и всё тут. В мире квантовой механики всё не так однозначно. На самом деле — и эксперименты это вскоре показали — в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведёт себя как частица (которая называется фотон), а частицы вроде электрона и протона могут вести себя как волны (см. Принцип дополнительности).

Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорема Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, — яркое тому доказательство. Как уже отмечалось во Введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.

Уравнение Шредингера для стационарного состояния

Понятие о стационарных состояниях.

У квантовой системы существуют особые состояния, в которых определяемые им вероятности не зависят от времени. Такие состояния называются стационарными. Атомы вещества обычно находятся в стационарных состояниях. Согласно принципу суперпозиции любое нестационарное состояние можно представить как сумму, как наложение друг на друга стационарных состояний.

Для многих физических явлений, происходящих в микромире, временное уравнение Шредингера можно упростить, исключив зависимость y от времени, иными словами, найти уравнение Шредингера для стационарных состояний — состояний с фиксированными значениями энергии.

Это возможно, если Ψ -функция удовлетворяет следующим условиям:

1) Потенциальная силовая функция для микрочастицы от времени не зависит:

В этом случае U(x) — потенциальная энергия микрочастицы.

2) Ψ — функция со временем не меняться: |Ψ| 2 = const по времени.

3) Полная энергия остаётся постоянной: E = const по времени.

4) Для стационарных состояний волновая Ψ — функция распадается на 2 сомножителя:

Ψ .

φ(t) — временной сомножитель; ψ(x) — координатная часть истинно волновой функции.

Для нахождения ψ(x,y,z) из (229) и (230) необходимо составить уравнение без времени. Сделаем переход от (229), используя для одномерного случая возможность замены Ψ (x,t) на φ(t) и ψ(x).

; ; ;

Из (99), поделив обе части уравнения на φ(t), получаем:

(231)

Уравнение (231) — стационарное уравнение Шредингера.

E — полная энергия, U(x) — потенциальная энергия, m – масса, ψ — волновая функция.

Его можно записать в виде:

(232)

В трехмерном случае

, (233)

где Δ — оператор Лапласа.

Уравнения (232) и (233) называются уравнениями Шредингера для стационарных состояний. В эти уравнения в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями y. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называют собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят онепрерывном, илисплошном, спектре, во втором —о дискретном спектре.

Дата добавления: 2015-07-18 ; просмотров: 1060 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://elementy.ru/trefil/21/Uravnenie_Shryodingera

http://helpiks.org/4-15529.html