Стационарное уравнение шредингера в общем случае

Стационарное уравнение шредингера в общем случае

Аналог классического волнового уравнения был предложен Э. Шредингером в 1925 г. Как и классическое уравнение, уравнение Шредингера связывает производные волновой функции по времени и координате. Уравнение Шредингера описывает поведение любых нерелятивистских систем. На примерах частицы, находящейся в бесконечно глубокой яме, и гармонического осциллятора рассмотрены простейшие квантовые системы, получены дискретные спектры состояний. Возможности описания динамики данных систем ограничены набором квантовых чисел, отражающих универсальные и внутренние симметрии квантовых систем.

4.1. Уравнение Шредингера

В квантовой физике изменение состояния частицы описывается уравнением Шредингера

(4.1)

где – оператор Гамильтона – аналог классической функции Гамильтона

в которой и заменены операторами импульса x, y, z и координаты , , :

х → = х, y → = y, z → = z,

(4.2)

Уравнение Шредингера

Зависящее от времени уравнение Шредингера:

где – гамильтониан системы.

Разделение переменных. Запишем Ψ(,t) = ψ()θ(t), где ψ является функцией координат, а θ – функция времени. Если не зависит от времени, тогда уравнение ψ = iћψ принимает вид θψ = iћψθ или

Левая часть является функцией только координат, а правая не зависит от переменной x. Поэтому обе части последнего уравнения должны быть равны одной и той же постоянной, которую обозначим E

θ(t) = exp(−iEt/ћ), ψ() = Eψ() и Ψ(,t) = ψ()exp(−iEt/ћ).

Уравнение ψ() = Eψ() называют стационарным уравнением Шредингера. Для одномерной системы с массой m в поле с потенциалом U(x) оно принимает вид:

или

Для трехмерной системы с массой m в поле с потенциалом U():

−(ћ 2 /2m)Δψ() + U()ψ() = Eψ(),

где Δ – лапласиан.

Так как уравнение Шредингера является линейным уравнением первого порядка по времени, то с его помощью по заданному значению волновой функции Ψ(x, y, z, 0) в момент времени t = 0 можно найти её значение в произвольный момент времени t − Ψ(x, y, z, t).

Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы не зависит от времени, имеет вид

ψ() = Eψ().(4.3)

Это уравнение называют стационарным уравнением Шредингера.

Так как в стационарном состоянии

Ψ(,t) = ψ()exp(−iEt/ћ)(4.4)

и вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(,t)|, то она

|ψ(x,y,z)| 2 , т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, поскольку выражается через квадрат модуля волновой функции.

4.2. Частица в одномерной прямоугольной яме с бесконечными стенками

Потенциальная энергия U(x) в прямоугольной яме удовлетворяет следующим условиям:

(4.5)


Рис.4.1. Прямоугольная яма с бесконечными стенками

Частица находится в области 0 ≤ x ≤ L. Вне этой области ψ(x) = 0. Уравнение Шредингера для частицы, находящейся в области 0 ≤ x ≤ L

(4.6)

Волновая функция, являющаяся решением уравнения (4.9), имеет вид

ψ(x)= Аsin kx + Bcos kx,(4.7)

где k = (2mE/ћ 2 ) 1/2 . Из граничных условий ψ(0) = 0, ψ(L) = 0 и условий непрерывности волновой функции следует

Аsin kL = 0.(4.8)

kL = nπ, n = 1, 2, 3, … , то есть внутри потенциальной ямы с бесконечно высокими стенками устанавливаются стоячие волны, а энергия состояния частиц имеет дискретный спектр значений En

n = 1, 2, 3, …(4.9)

Частица может находиться в каком-то одном из множества дискретных состояний, доступных для неё.
Каждому значению энергии En соответствует волновая функция ψn(x), которая с учетом условия нормировки

(4.10)

В отличие от классической, квантовая частица в прямоугольной яме не может иметь энергию
E 2 π 2 /(2mL 2 ). Состояния частицы ψn в одномерном поле бесконечной потенциальной ямы полнос­тью описывается с помощью одного квантового числа n. Спектр энергий дискретный.

Рис. 4.2. Уровни энергии и волновые функции частицы Ψ в бесконечной прямоугольной яме. Квадрат модуля волновой функции |Ψ| 2 определяет вероятность нахождения частицы в различных точках потенциальной ямы.

4.3. Гармонический осциллятор

Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид

(4.11)

В этом случае одномерное уравнение Шредингера имеет вид

(4.12)

Допустимые значения полной энергии определяются формулой

En = ћω0(n + 1/2), n = 0, 1, 2,(4.13)

В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.

Частица в одномерной потенциальной яме

Одномерная прямоугольная яма шириной L:

n = 1, 2, …

Одномерный гармонический осциллятор:

En = ћω0(n + 1/2), n = 0, 1, 2,

4.4. Частица в поле с центральной симметрией

В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид

(4.14)

Решение уравнения (4.14) записываются в виде произведения радиальной и угловой функций

ψ(r,θ,φ) = Rnl(r)Ylm(θ,φ),(4.15)

где радиальная функция Rnl(r) и угловая функция Ylm(θ,φ), называемая сферической, удовлетворяют уравнениям

2 Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)(4.16)
Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)
(4.17)

Уравнение (4.16) определяет возможные собственные значения l и собственные функции Ylm(θ,φ) оператора квадрата момента 2 . Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции Rnl(r), от которых зависит энергия системы (рис. 4.3).
Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции Rnl(r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.

Рис. 4.3. Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
r0 = ћ 2 /mee 2 ≈ 0.529·10 8 cм.

Решения уравнения

существуют лишь при определенных значениях квантовых чисел n (радиальное квантовое число), l (орбитальное квантовое число) и m (магнитное квантовое число).
Возможные энергетические состояния системы (уровни энергии) определяются числами n и l и в случае сферически симметричных состояний не зависят от квантового числа m. Число n может быть только целым:
n = 1, 2, …, ∞. Число l может принимать значения 0, 1, 2, …, ∞.

4.5. Орбитальный момент количества движения

Собственные значения L 2 и Lz являются решением уравнений

2 Ylm(θ,φ) = L 2 Ylm(θ,φ) и zYlm(θ,φ) = LzYlm(θ,φ).

Они имеют следующие дискретные значения

L 2 = ћ 2 l(l + 1), где l = 0, 1, 2, 3, …,
Lz = ћm, где m = 0, ± 1, ± 2, ± 3,…, ± l.

Для характеристики состояний с различными значениями орбитального момента l обычно используют следующие обозначения:

Спектроскопические названия орбитальных моментов l

l = 0s-состояние
l = 1p-состояние
l = 2d-состояние
l = 3f-состояние
l = 4g-состояние
l = 5h-состояние
и. т. д.

Состоянию с l = 0 отвечает сферически симметричная волновая функция. В тех случаях, когда l ≠ 0 волновая функция не имеет сферической симметрии. Симметрия волновой функции определяется симметрией сферических функций Ylm(θ,φ). Имеет место интересное квантовое явление, когда решение сферически симметричной задачи (потенциал описывает сферически симметричную систему) приводит к состояниям, не обладающим сферической симметрией. Таким образом, симметрия уравнений не обязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности этих решений.
Для частицы, находящейся в сферически симметричном потенциале, величина орбитального момента количества движения L:

(4.18)

Обычно, для упрощения, когда говорят о величине орбитального момента количества движения, называют этой величиной квантовое число l, имея в виду, что между l и L имеется однозначная связь (4.18).

Рис. 4.4 Возможные ориентации вектора при квантовом числе l = 2.

Так как величина l может принимать только целочисленные значения 0, 1, 2, 3,…, то и орбитальный момент количества движения L квантуется. Например, для частицы с l = 2 момент количества движения

=
= 6.58·10 -22 √6 МэВ·сек ≈ 2.6·10 — 34 Дж·сек.

Пространственное квантование. Орбитальный момент количества движения является векторной величиной. Так как величина орбитального момента количества движения квантуется, то и направление по отношению к выделенному направлению z, например, к внешнему магнитному полю, также квантуется и принимает дискретные значения Lz = ћm, где m изменяется от +l до –l, т. е. имеет 2l + 1 значений. Например, при l = 2 величина m принимает значения +2, +1, 0, -1, -2 (см. рис. 4.4). Вместе с тем энергия системы не зависит от m, т. е. от направления вектора , что является очевидным следствием сферической симметрии системы.
Состояние частицы, находящейся в сферически симметричном поле, полностью описывается тремя квантовыми числами: n, l и m.
Появление квантовых чисел связано со свойствами симметрии системы. Характер этой симметрии определяет возможные значения квантовых чисел. Очевидно, что система, описываемая функцией e im φ , примет прежнее значение только тогда, когда азимутальный угол φ в результате поворота вокруг оси z примет прежнее значение φ. Этому условию функция e im φ удовлетворяет только в случае, когда величина mφ кратна 2π. Т.е. величина m должна иметь целые значения. Так как необходимо учитывать вращение в двух противоположных направлениях и отсутствие вращения, единственно возможными значениями оказываются m = 0, ±1, ±2, … .

4.6. Спин

Спин − собственный момент количества движения частицы. Между значением вектора спина и квантовым числом спина s выполняется такое же соотношение, как между величиной значением вектора орбитального момента и орбитальным квантовым числом l:

2 = ћ 2 s(s + 1)(4.19)

В отличие от орбитального квантового числа l, которое может быть лишь целым числом или нулем, спиновое квантовое число s (в дальнейшем просто спин) может быть как целым (включая нуль), так и полуцелым, т. е. s = 0, 1/2, 1, 3/2, 2, 5/2, … , но при этом для каждой элементарной частицы спин может принимать единственное присущее этому типу частиц значение. Так, спины π-мезонов и К-мезонов равны 0. Спины электрона, протона, нейтрино, кварков и их античастиц равны 1/2. Спин фотона равен 1. Бозоны составляют класс частиц с целым значением спина, спин фермионов имеет полуцелое значение. Спин частицы невозможно изменить, также как её заряд или массу. Это её неизменная квантовая характеристика.
Как и в случае других квантовых векторов, проекция вектора спина на любое фиксированное направление в пространстве (например, на ось z) может принимать 2s + 1 значение:

szћ = ±sћ, ±(s − 1)ћ, ±(s − 2)ћ. ±1/2ћ или 0.

Число sz − это квантовое число проекции спина. Максимальная величина sz совпадает с s. Так как спин электрона равен 1/2, то проекция этого спина может принимать лишь два значения sz = ±1/2. Если проекция +1/2, то говорят, что спин направлен вверх, если проекция -1/2, то говорят, что спин направлен вниз.

4.7. Полный момент количества движения

Полный момент количества движения частицы или системы частиц является векторной суммой орбитального и спинового моментов количества движения.

= + .

Квадрат полного момента имеет значение:

2 = ћ 2 j(j + 1).

Квантовое число полного момента j, соответствующее сумме двух векторов и , может принимать ряд дискретных значений, отличающихся на 1:

j = l + s, l + s −1. |l − s|

Проекция на выделенную ось Jz также принимает дискретные значения:

Число значений проекции Jz равно 2j + 1. Если для и определены единственные значения проекций на ось z lz и sz, то jz также определена однозначно: jz = lz + sz.

4.8. Квантовые числа

Квантовые числа – это целые или дробные числа, которые определяют все возможные значения физической величины, характеризующей различные квантовые системы – атомы, атомные ядра, кварки и другие частицы.

Таблица квантовых чисел

nРадиальное квантовое число. Определяет число узлов волновой функции и энергию системы. n = 1, 2, …, ∞.
J, jПолный угловой момент J и его квантовое число j. Последнее никогда не бывает отрицательным и может быть целым или полуцелым в зависимости от свойств рассматриваемой системы. 2 = ћ 2 j(j + 1).
L, lОрбитальный угловой момент L и его квантовое число l. Интерпретация l такая же, как j, но l может принимать только целые значения, включая нуль: l = 0, 1, 2,…. L 2 = ћ 2 l(l + 1).
mМагнитное квантовое число. Проекция полного или орбитального углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента m = ±j, ±(j-1), …, ±1/2 или 0. Для орбитального m = ± l, ± (l-1), …, ±1, 0.
S, sСпиновый угловой момент S и его квантовое число s. Оно может быть либо положительным целым (включая нуль), либо полуцелым. s – неизменная характеристика частицы опреде­лен­ного типа. S 2 = ћ 2 s(s + 1).
szКвантовое число проекции спинового момента частицы на выделенную ось. Эта проекция может принимать значения szћ, где sz = ± s, ± (s -1), …, ±1/2 или 0.
P или πПространственная четность. Характеризует поведение системы при пространственной инверсии → — (зеркальном отражении). Полная четность частицы Р = π(-1) l , где π – её внутренняя четность, а (-1) l – её орбитальная четность. Внутренние четности кварков положительные, антикварков — отрицательные.
IИзоспин. Характеризует свойство зарядовой инвариантности сильных взаимодействий

Для обозначения спинового момента часто используют букву J.

Все состояния, в которых может находиться квантовая система, описываются с помощью полного набора квантовых чисел. Так в случае протона в ядре состояние протона описывается с помощью четырех квантовых чисел, соответствующих четырем степеням свободы – трем пространственным координатам и спину. Это

  • Радиальное квантовое число n ( 1, 2, …, ∞),
  • Орбитальное квантовое число l (0, 1, 2, …),
  • Проекция орбитального момента m (± l, ± (l-1), …, ±1, 0),
  • Спин протона s =1/2.

Для описания сферически-симметричных систем в квантовой физике используются различные сферически симметричные потенциалы с различной радиальной зависимостью:

  • Кулоновский потенциал U = Q/r,
  • Прямоугольная потенциальная яма
  • Потенциал типа гармонического осциллятора U = kr 2 ,
  • Потенциал Вудса-Саксона (с его помощью описываются внутриядерные взаимодействия):

где U0, а и R – положительные константы (R – радиус ядра). Во всех случаях сферически симметричные системы можно описать с помощью набора квантовых чисел n, l, j, jz, однако, в зависимости от радиального вида потенциала энергетический спектр состояний системы будет различным.
Существование сохраняющихся во времени физических величин тесно связано со свойствами симметрии гамильтониана системы. Например, в случае, если квантовая система обладает центральной симметрией U = U(r), то этой системе соответствует сохранение орбитального момента количества движения l и одной из его проекций m. При этом из-за сферической симметрии задачи энергия состояний не будет зависеть от величины m, т. е. состояния будут вырожденными по m.
Наряду с пространственными симметриями, связанными с непрерывными преобразованиями, в квантовой физике существуют и другие симметрии – дискретные. Одной из них является зеркальная симметрия волновой функции относительно инверсии координат (→ —). Оператору инверсии соответствует квантовое число четность, которое может принимать два значения +1 и -1 в зависимости от того, сохраняется ли знак волновой функции при инверсии или меняется на противоположный.
Система тождественных частиц характеризуется еще одной симметрией – симметрией относительно перестановок тождественных частиц. Эта симметрия определяется свойствами частиц, образующих систему. Системы частиц с целым спином (бозонов) описываются симметричными волновыми функциями, системы частиц с полуцелым спином (фермионов) − антисимметричными волновыми функциями.

Задачи

4.1. Вычислите допустимые уровни энергии электрона, находящегося в одномерной прямоугольной потенциальной яме шириной 10 -8 см, протона, находящегося в потенциальной яме 5 Фм, и шарика массой 1 г, находящегося в потенциальной яме 1 см.

4.2. Рассчитать энергию перехода между состояниями 1s и 2s в атоме водорода.

4.3. Найти значение полного момента j для протона в d-состоянии. Каким будет результат измерения полного момента протона в состоянии 1d5/2?

4.4. Найти полный момент (квантовое число j) системы двух нуклонов в s‑состоянии (l = 0).

4.5. Какие значения может иметь полный момент системы j, если
А. Нейтрон и протон находятся в состояниях с |l,s:j>n = |1, 1 /2: 3 /2>, |l,s:j>p = |1, 1 /2: 3 /2>?
Б. Два нейтрона находятся в состояниях с |l,s:j>1 = |1, 1 /2: 3 /2> и |l,s:j>2 = |1, 1 /2: 3 /2>?

4.6. А) Нейтрон находится в p-состоянии. Найти значения полного момента j и возможные значения проекции момента jz. Каким будет результат измерения орбитального момента частицы в этом состоянии? Б) Рассмотрите задачу А) для протона в d-состоянии.
Ответ: А) j = 3/2, 1/2; jz = ±3/2, ±1/2; L = ћ√ l(l +1) = √ 2 ћ;
Б) j = 5/2, 3/2; jz = ±5/2, ±3/2, ±1/2; L = ћ√ l(l +1) = √ 6 ћ

4.7. А) Частица с собственным моментом s = 3/2 находится в состоянии с орбитальным моментом
l = 2. Найти полный момент частицы j.
Б) Частица с собственным моментом s = 1/2 находится в состоянии с орбитальным моментом
l = 3. Определите полный момент частицы j
Ответ: А) j = 7/2 ÷ 1/2; Б) j = 7/2, 5/2

4.8. Протон и нейтрон находятся в состоянии с относительным орбитальным моментом L = 1. Найти полный момент системы J.
Ответ: J = 0, 1, 2

4.9. На оболочке с квантовым числом n = 1, l = 2 находятся протон и нейтрон. Определить их суммарный полный момент J и его проекцию Jz. Изменится ли результат, если на оболочке n = 1,
l = 2 будут находиться два нейтрона?

4.10. Почему возникают вырожденные состояния?

4.11. Написать оператор Гамильтона электронов в атоме He.

4.12. Напишите стационарное уравнение Шредингера в сферической системе координат.

4.13. Какие квантовые числа характеризуют частицу в центрально-симметричной потенциальной яме?

4.14. Покажите, что волновые функции ψ = Aexp(kx −ωt) и ψ = Asin(kx −ωt) не удовлетворяют зависящему от времени уравнению Шредингера.

4.15. Покажите, что волновые функции ψ = Ae i(kx −ωt) и ψ = A(cos(kx −ωt) − sin(kx −ωt))удовлетворяют зависящему от времени уравнению Шредингера.

4.16. Частица находится в низшем состоянии n = 1 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L.
А) Рассчитайте вероятность обнаружить частицу в интервале Δx = 0.001L при x = 1 /2L, x = 2 /3L, x = L.
Б) Рассмотрите случай, когда частица находится в состоянии n = 2 при тех же значениях x.
Ответ: А) P(L/2) = 0.002; P(2L/3) = 0.0015; P(L) = 0; Б) P(L/2) = 0; P(2L/3) = 0.0015; P(L) = 0

4.17. Частица находится в состоянии n = 2 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить частицу в интервале ( 1 /3L, 2 /3L).
Ответ: P(L/3, 2L/3) = 0.2

4.18. Электрон находится всостонии n = 5 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить электрон в области x от 0.2L до 0.5L.
Ответ: P(0.2L, 0.5L) = 0.3

4.19. Электрон находится в бесконечно глубокой одномерной потенциальной яме. Рассчитайте ширину потенциальной ямы, если энергия состояния n = 1 равна 0.1 эВ.
Ответ: L = 1.9 нм

4.20. Рассчитайте средние значения и 2 > для состояний n = 1, 2, 3 в бесконечно глубокой прямоугольной потенциальной яме.

4.21. Что общего и в чем различие в описании атома водорода в теории Шредингера и в модели Бора?

4.22. Почему энергии атома водорода в теории Шредингера не зависят от орбитального квантового числа l?

4.23. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?
Ответ: Lz = -3ћ, -2ћ. 3ћ; L 2 = 12ћ 2

4.24. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?

Уравнение Шредингера (общие свойства)

№1 Стационарное уравнение Шредингера имеет вид . Это уравнение записано для….

Стационарное уравнение Шредингера в общем случае имеет вид

, где потенциальная энергия микрочастицы. Для одномерного случая . Кроме того, внутри потенциального ящика , а вне ящика частица находиться не может, т.к. его стенки бесконечно высоки. Поэтому данное уравнение Шредингера записано для частицы в одномерном ящике с бесконечно высокими стенками.

Линейного гармонического осциллятора

ü Частицы в одномерном потенциальном ящике с бесконечно высокими стенками

Частицы в трехмерном потенциальном ящике с бесконечно высокими стенками

Электрона в атоме водорода

Установите соответствия между квантовомеханическими задачами и уравнениями Шредингера для них.

Общий вид стационарного уравнения Шредингера имеет вид:

потенциальная энергия частицы,

оператор Лапласа. Для одновременного случая

.Выражение для потенциальной энергии гармонического осциллятора ,т.е частицы совершающей одномерное движение под действием квазиупругой силы имеет вид U= .

Значение потенциальной энергии электрона в потенциальном ящике с бесконечно высокими стенками U=0.Электрон в водородоподобном атоме обладаем потенциальной энергией Для атома водородаZ=1 .

Таким образом, для электрона в одномерном потенциальном ящике ур-ие Шредингера имеет вид:

С помощью волновой функции ,являющейся решением уравнения Шредингера ,можно определить….

Варианты ответа: (Укажите не менее двух вариантов ответа)

Средние значения физических величин ,характеризующих частицу

Вероятность того,что частица находится в определенной области пространства

Величина имеет смысл плотности вероятности(вероятности,отнесенной к единице объема),т.е определяет вероятность пребывания частицы в соответствующем месте пространства.Тогда вероятность W обнаружения частицы в определенной области пространства равна

Уравнение Шредингера (конкретные ситуации)

№1Собственные функции электрона в одномерном потенциальном ящике с бесконечно высокими стенками имеют вид где ширина ящика, квантовое число, имеющее смысл номера энергетического уровня. Если число узлов функции на отрезке и , то равно…

Число узлов , т.е. число точек, в которых волновая функция на отрезке обращается в нуль, связано с номером энергетического уровня соотношением . Тогда , и по условию это отношение равно 1,5. Решая полученное уравнение относительно , получаем, что

Ядерные реакции.

№1В ядерной реакции буквой обозначена частица …

Из законов сохранения массового числа и зарядового числа следует, что заряд частицы равен нулю, а массовое число равно 1. Следовательно, буквой обозначен нейтрон.

На графике в полулогарифмическом масштабе показана зависимость изменения числа радиоактивных ядер изотопа от времени.Постоянная радиоактивного распада в равна …(ответ округлите до целых)

Число радиоактивных ядер изменяется со временем по закону -начальное число ядер, -постоянная радиоактивного распада.Прологарифмировав это выражение,получим

ln .Следовательно, =0,07

Законы сохранения в ядерных реакциях.

Реакция не может идти из-за нарушения закона сохранения …

Во всех фундаментальных взаимодействиях выполняются законы сохранения: энергии, импульса, момента импульса (спина) и всех зарядов (электрического , барионного и лептонного ). Эти законы сохранения не только ограничивают последствия различных взаимодействий, но определяют также все возможности этих последствий. Для выбора правильного ответа надо проверить, каким законом сохранения запрещена и какими разрешена приведенная реакция взаимопревращения элементарных частиц. Согласно закону сохранения лептонного заряда в замкнутой системе при любых процессах, разность между числом лептонов и антилептонов сохраняется. Условились считать для лептонов: . лептонный заряд а для антилептонов: . лептонный заряд . Для всех остальных элементарных частиц лептонные заряды принимаются равными нулю. Реакция не может идти из-за нарушения закона сохранения лептонного заряда , т.к.

ü Лептонного заряда

Спинового момента импульса

Реакция не может идти из-за нарушения закона сохранения…

Во всех фундаментальных взаимодействиях выполняются законы сохранения: энергии,импульса,момента импульса(спина)и всех зарядов(электрического Q,барионного B и лептонного L).Эти законы сохранения не только ограничивают последствия различных взаимодействий,но определяют также все возможности этих последствий. Согласно закону сохранения барионного заряда B,для всех процессов с участием барионов и антибарионов суммарный барионный зарад сохраняется. Барионам (нуклонам n,p и гиперонам)приписывается барионный заряд

B=-1,а всем остальным частицам барионный заряд-B=0.Реакция не может идти из-за нарушения закона барионного заряда B,т.к (+1)+(+1)

Варианты ответа: ,лептонного заряда,спинового момента импульса,электрического заряда.

Законом сохранения электрического заряда запрещены реакции…

Варианты ответа(не менее 2):

При взаимодействии элементарных частиц и их превращении в другие возможны только такие процессы,в которых выполняются законы сохранения,в частности закон сохранения электрического заряда:суммарный электрический заряд частиц,вступающих в реакцию,равен суммарному электрическому заряду частиц,полученных в результате реакции.Электрический заряд Q в единицах элементарного заряда равен:у нейтрона (n) Q=0,протона (P) Q=+1, электрона ( )Q=-1,позитрона ( ) Q=+1,электронного нейтрино и антинейтрино ( Q=0, антипротона ( Q=-1, мюонного нейтрино ( )Q=0, мюона ( ) Q=-1.Закон сохранения электрического заряда не выполняется в реакциях:

№1Известно четыре вида фундаментальных взаимодействий. В одном из них участниками являются все заряженные частицы, обладающие магнитным моментом, переносчиками –фотона. Этот вид взаимодействия характеризуется сравнительной интенсивностью , радиус его действия равен …

Все перечисленные характеристики соответствуют электромагнитному взаимодействию. Его радиус действия равен бесконечности.

ü

СТАЦИОНАРНОЕ УРАВНЕНИЕ ШРЕДИНГЕРА

ОПИСАНИЕ ПОВЕДЕНИЯ ЭЛЕКТРОНА В КВАНТОВОЙ МЕХАНИКЕ

1. Уравнение Шредингера

Для выполнения лабораторных работ 6 и 7 необходимо знакомство с основами квантовой механики. Остановимся на тех её положениях, которые непосредственно связаны с содержанием данных работ.

В них изучается поведение микрочастицы (электрона) в определенных внешних условиях. Это означает, что потенциальная энергия электрона U, Обусловленная его взаимодействием с окружающими объектами, является известной функцией координат: . Требуется найти эволюцию состояния электрона во времени. В отличие от классической механики, состояние частицы в квантовой механике нельзя задавать, указывая её координаты и компоненты скорости (или импульса). Состоянию частицы в момент времени T0 в квантовой механике ставят в соответствие Волновую функцию – функцию координат, вообще говоря, комплексную. Соответственно, эволюцию состояния описывает функция координат и времени . Волновую функцию можно найти, решая дифференциальное уравнение в частных производных

, (1)

Называемое Временны́м уравнением Шредингера, где I – мнимая единица, ( H постоянная Планка), Ñ2 – оператор Лапласа (имеющий в декартовых координатах вид ), Т – масса частицы. Уравнение (1) при заданном потенциале имеет бесконечное множество решений, соответствующих множеству возможных начальных состояний электрона. Если задано и начальное состояние электрона , его эволюция определяется уравнением (1) однозначно.

2. Уравнение Шредингера для стационарных состояний

Среди решений уравнения (Б.1) особый интерес представляют волновые функции вида

, ω = Const (2)

Описывающие состояния, называемые Стационарными. Легко проверить, что волновая функция вида (2) будет решением уравнения Шредингера (1), если удовлетворяет уравнению

, (3)

Где . Постоянная E в (3) имеет смысл полной энергии частицы. Таким образом, в стационарных состояниях Е = СоNst, а зависимость волновой функции от времени описывается сомножителем , осциллирующим с частотой .

Уравнение (3) называется Уравнением Шредингера для стационарных Состояний, или Стационарным уравнением Шредингера. Существенно, что стационарное уравнение Шредингера имеет физически приемлемые решения, вообще говоря, не для любых значений Е, А лишь для некоторого множества . Находя такие решения, мы одновременно получаем и набор возможных значений энергии стационарных состояний электрона при заданных внешних условиях. О нахождении множества говорят как об определении Энергетического спектра, или Уровней энергии, или как о Квантовании энергии Частицы. Физически приемлемыми в рассматриваемом круге задач считаются функции, однозначные и ограниченные во всей области их определения. Можно показать, что удовлетворяющие стационарному уравнению Шредингера (3) однозначные ограниченные функции, будут непрерывными и гладкими (т. е. имеющими непрерывную первую производную) даже в тех точках, где претерпевает конечный разрыв (скачок).

3. Волновая функция и заключенная в ней информация

Как уже говорилось, волновая функция описывает состояние частицы. Это означает, что в заключена информация о распределениях вероятностей для всех физических величин (координат, проекций импульса, момента импульса и т. д.), относящихся к частице, для любого момента времени.. В частности, Плотность вероятности в точке с координатами Х, У, Z В момент времени T (т. е. вероятность нахождения частицы в малом объеме в окрестности указанной точки, деленная на этот объем), пропорциональна квадрату модуля волновой функции

(4)

(звездочка обозначает комплексное сопряжение). Важную информацию о движении частицы дает выражающийся через вектор

, (5)

Называемый вектором плотности потока вероятности. Он указывает направление наиболее быстрого перемещения вероятности и дает скорость этого перемещения. Смысл величин (4) и (5) раскрывается в эксперименте, когда производится N Измерений над электроном в одном и том же состоянии. Тогда при больших значениях N должно выполняться: DN¢ / N

, DN¢¢ / N

J , где DN¢ число электронов, обнаруженных в единичном объеме вблизи точки (Х, у, z), а DN¢¢ – результирующее число электронов, прошедших за единицу времени в направлении вектора сквозь перпендикулярную к нему единичную площадку.

В связи с приведенной интерпретацией выражений (4) и (5) волновую функцию называют также Амплитудой вероятности.

Отметим, что для стационарных состояний выражения (4) и (5) не зависят от времени и что для вещественных векторРавен нулю.

4. Оптическая аналогия

Анализируя квантовомеханическую задачу, полезно сопоставлять ее, с одной стороны, с аналогичной задачей классической механики, а с другой – с некоторой оптической задачей. В классической механике аналогом, очевидно, будет задача о частице такой же массы, движущейся в силовом поле, характеризуемом той же потенциальной энергией , что и в исходной квантовой. Выяснив характер движения классической частицы, можно лучше понять особенности ее квантовомеханического поведения. Оптическим аналогом для квантовомеханической задачи с
E = Const будет, Как можно показать, задача о распространении монохроматической световой волны в неоднородной среде, для которой показатель преломления N Изменяется по закону

. (6)

Отметим, что длину волны при этом можно оценивать по соотношению де Бройля , где – импульс частицы, вычисленный согласно классической механике.

Аналогия с оптикой позволяет во многих случаях, не решая уравнение Шредингера, предвидеть и объяснить качественно поведение y-функции, а следовательно и частицы.

5. Одномерные квантовомеханические задачи

Среди квантовомеханических задач выделяются своей простотой одномерные, т. е. такие, в которых U = U ( X ), а волновую функцию можно считать зависящей только от Х и T. В этих задачах волновые функции стационарных состояний имеют вид

(7)

А стационарное уравнение Шредингера сводится к уравнению в обыкновенных производных

(8)

Уравнение (8) решается особенно просто, когда ось X можно разбить на области, в каждой из которых потенциал U(X) принимает постоянные значения, а на границах соседних областей испытывает скачок. Такой потенциал называется Прямоугольным Из-за прямых углов на его графике. Строго говоря, такие потенциалы не реализуемы, поскольку им соответствуют бесконечные силы в точках скачков потенциальной энергии. Все же прямоугольные потенциалы дают грубое представление о многих реальных системах, позволяя получать полезные результаты крайне простыми математическими методами.

В области, где потенциал U Постоянен, при E > U стационарное уравнение Шредингера (8) сводится к уравнению

Где , а его общее решение имеет вид

, (9)

Где А И В – произвольные постоянные.

При этом, в соответствии с (9) и (7), зависящая от времени

Волновая функция , будет равна выражению

,

В котором первое слагаемое описывает волну, бегущую вправо, а второе – влево. При переходе от одной области к другой U изменяется и, следовательно, изменяется длина волны. Существенно, что на границе между областями, как уже отмечалось, y(Х) и ее первая производная D Y / D x должны быть непрерывны. Это приводит к двум уравнениям связи между амплитудными коэффициентами А и В для соседних областей.

6. Движение электрона в области потенциальной ступеньки

Рассмотрим случай, когда потенциал испытывает только один скачок (Потенциальная Ступенька, рис. 1). Предположим, что электроны с некоторой энергией Е Приходят слева. Согласно классической механике электроны должны беспрепятственно проходить точку Х = 0, поскольку в этой точке они испытывает действие силы, направленной в сторону своего движения (ускоряющей силы).

Используем, прежде всего, оптическую аналогию. Согласно (6) при X= 0 происходит скачкообразное изменение показателя преломления N , а при падении света на поверхность раздела двух сред с различными N часть волны отражается от неё, а часть проходит во вторую среду. Поэтому следует ожидать отражения в точке Х = 0 и для y-волны, а следовательно, отличной от нуля вероятности отражения электрона при падении на скачок потенциала как справа, так и слева.

Подтвердим эти предположения строгим расчетом на основе стационарного уравнения Шредингера (8). В области I, слева от скачка потенциала (т. е. при Х 0) для случая, когда электроны падают только слева, решение содержит лишь одно слагаемое, соответствующее прошедшей волне

,

Где ; . Постоянные А, В И С Не могут быть заданы произвольно, поскольку их связывают условия непрерывности волновой функции и её первой производной в точке : и , где . Из этих условий легко найти, что коэффициенты В И С – амплитуды отраженной и прошедшей волн – связаны с амплитудой падающей волны А следующим образом:

, . (10)

Поскольку K2 > K1 , амплитуды отраженной и падающей волн имеют противоположные знаки. Это означает, что для падающей слева волны её фаза при отражении от скачка потенциала изменяется на π – происходит «потеря» полуволны.

Плотность потока электронов Г может быть выражена через их концентрацию Пе И скорость v : Г = Ne V. Поскольку Пе

, а v

K|ψ|2. Доля электронов, которые проходят вправо, т. е. коэффициент прохождения DЕ,, равен отношению плотности прошедшего потока к плотности падающего:

.

Аналогично рассчитывается и коэффициент отражения:

.

Те же выражения получаются в результате подсчета коэффициентов и по формулам

, ,

Вытекающим непосредственно из определения вектора плотности потока вероятности .

Легко проверить также, что и не изменятся, если электроны с энергией Е Направить из области II в область I. Отметим, однако, что в этом случае отражение будет происходить без изменения фазы, поскольку в выражении (10) для амплитуды отраженной волны В Волновые числа K1 и K2 поменяются местами.

Следует подчеркнуть, что свойство отражения частиц от скачков потенциала является чисто квантовомеханическим эффектом. Оно вытекает из волновых свойств материи и не имеет места в классической физике.

В заключение сформулируем квантовомеханическую задачу, позволяющую на примере одномерной прямоугольной симметричной потенциальной ямы (рис. 2) простыми методами рассмотреть квантование энергии электрона и дать качественное объяснение эффекта Рамзауэра.

В этой задаче потенциальная энергия электрона U (Х) задается в виде:

U2 > U1.

Величина L = 2 а – Ширина ямы, – её глубина.

В зависимости от полной энергии электрона E, Возникают три случая:


источники:

http://zdamsam.ru/a38341.html

http://webpoliteh.ru/stacionarnoe-uravnenie-shredingera/