Степень окисления окислителя в реакции уравнение которой

Степень окисления окислителя в реакции уравнение которой

Установите соответствие между уравнением реакции и свойством азота, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

А)

Б)

В)

Г)

3) и окислитель, и восстановитель

4) не окислитель, не восстановитель

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

УРАВНЕНИЕ РЕАКЦИИСВОЙСТВО АЗОТА
АБВГ

Окислитель — это вещество, в состав которого входит атом, который присоединяет электроны, следовательно, понижает свою степень окисления. Восстановитель — это вещество, в состав которого входит атом, который отдает электроны, следовательно, повышает свою степень окисления. Определяем степень окисления азота в каждом уравнении:

А) вступил со с. о. «−3» и после реакции сохранил «−3», следовательно, ни окислитель, ни восстановитель;

Б) вступил со с. о. «−3», а после реакции стал «0», значит, повысил (восстановитель);

В) вступил с «−3», а после реакции стал «+2», значит, повысил (восстановитель);

Г) вступил с «0», а после реакции «−3» — понизил с. о. (окислитель).

Задания 21. Окислительно-восстановительные реакции.

Установите соответствие между уравнением реакции и свойством элемента азота, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

1) является окислителем

2) является восстановителем

3) является и окислителем, и восстановителем

4) не проявляет окислительно-восстановительных свойств

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 4221

Пояснение:

А) NH4HCO3 – соль, в состав которой входит катион аммония NH4 + . В катионе аммония азот всегда имеет степень окисления, равную -3. В результате реакции он превращается в аммиак NH3. Водород практически всегда (кроме его соединений с металлами) имеет степень окисления, равную +1. Поэтому, чтобы молекула аммиака была электронейтральной, азот должен иметь степень окисления, равную -3. Таким образом, изменения степени окисления азота не происходит, т.е. он не проявляет окислительно-восстановительных свойств.

Б) Как уже было показано выше, азот в аммиаке NH3 имеет степень окисления -3. В результате реакции с CuO аммиак превращается в простое вещество N2. В любом простом веществе степень окисления элемента, которым оно образовано, равна нулю. Таким образом, атом азота теряет свой отрицательный заряд, а поскольку за отрицательный заряд отвечают электроны, это означает их потерю атомом азота в результате реакции. Элемент, который в результате реакции теряет часть своих электронов, называется восстановителем.

В) В результате реакции NH3 со степенью окисления азота, равной -3, превращается в оксид азота NO. Кислород практически всегда имеет степень окисления, равную -2. Поэтому для того, чтобы молекула оксида азота была электронейтральной, атом азота должен иметь степень окисления +2. Это означает, что атом азота в результате реакции изменил свою степень окисления с -3 до +2. Это говорит о потере атомом азота 5 электронов. То есть азот, как и случает Б, является восстановителем.

Г) N2 – простое вещество. Во всех простых веществах элемент, который их образует, имеет степень окисления, равную 0. В результате реакции азот превращается в нитрид лития Li3N. Единственная степень окисления щелочного металла, кроме нуля (степень окисления 0 бывает у любого элемента), равна +1. Таким образом, чтобы структурная единица Li3N была электронейтральной, азот должен иметь степень окисления, равную -3. Получается, что в результате реакции азот приобрел отрицательный заряд, что означает присоединение электронов. Азот в данной реакции окислитель.

Установите соответствие между схемой реакции и свойством элемента фосфора, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

УРАВНЕНИЕ РЕАКЦИИСВОЙСТВО АЗОТА

1) является окислителем

2) является восстановителем

3) является и окислителем, и восстановителем

4) не проявляет окислительно-восстановительных свойств

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 1224

Установите соответствие между уравнением реакции и изменением степени окисления окислителя в ней: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИСВОЙСТВО ФОСФОРА

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 1463

Установите соответствие между уравнением реакции и изменением степени окисления окислителя в ней: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

УРАВНЕНИЕ РЕАКЦИИИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ОКИСЛИТЕЛЯ

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3425

Установите соответствие между схемой реакции и коэффициентом перед окислителем в ней: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

УРАВНЕНИЕ РЕАКЦИИИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ОКИСЛИТЕЛЯ

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3442

Установите соответствие между уравнением реакции и изменением степени окисления окислителя в ней: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИКОЭФФИЦИЕНТ ПЕРЕД ОКИСЛИТЕЛЕМ

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 4436

Установите соответствие между исходными веществами и свойством меди, которое этот элемент проявляет в данной реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

УРАВНЕНИЕ РЕАКЦИИИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ОКИСЛИТЕЛЯ

1) является окислителем

2) является восстановителем

3) является и окислителем, и восстановителем

4) не проявляет окислительно-восстановительных свойств

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 2124

Установите соответствие между схемой реакции и свойством серы, которое она проявляет в данной реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ИСХОДНЫЕ ВЕЩЕСТВАСВОЙСТВО МЕДИ

1) является окислителем

2) является восстановителем

3) является и окислителем, и восстановителем

4) не проявляет окислительно-восстановительных свойств

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3224

Установите соответствие между схемой реакции и свойством фосфора, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИСВОЙСТВО СЕРЫ

1) является окислителем

2) является восстановителем

3) является и окислителем, и восстановителем

4) не проявляет окислительно-восстановительных свойств

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3242

Установите соответствие между схемой реакции и свойством азота, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИСВОЙСТВО ФОСФОРА

1) является окислителем

2) является восстановителем

3) является и окислителем, и восстановителем

4) не проявляет окислительно-восстановительных свойств

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 2141

Установите соответствие между схемой реакции и свойством фтора, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИСВОЙСТВО АЗОТА

1) является окислителем

2) является восстановителем

3) является и окислителем, и восстановителем

4) не проявляет окислительно-восстановительных свойств

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 1444

Установите соответствие между схемой реакции и изменением степени окисления восстановителя: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИСВОЙСТВО ФТОРА

А) NaIO → NaI + NaIO3

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 5622

Установите соответствие между уравнением реакции и изменением степени окисления восстановителя в данной реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ВОССТАНОВИТЕЛЯ

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 5331

Установите соответствие между уравнением окислительно-восстановительной реакции и изменением степени окисления серы в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

УРАВНЕНИЕ РЕАКЦИИИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ВОССТАНОВИТЕЛЯ

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 4123

Установите соответствие между изменением степени окисления серы в реакции и формулами исходных веществ, которую в нее вступают: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

УРАВНЕНИЕ РЕАКЦИИИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ СЕРЫ

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 1532

Установите соответствие между изменением степени окисления серы в реакции и формулами исходных веществ, которую в нее вступают: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯФОРМУЛЫ ВЕЩЕСТВ

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3523

Установите соответствие между свойствами азота и уравнением окислительно-восстановительной реакции, в которой он проявляет эти свойства: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯФОРМУЛЫ ВЕЩЕСТВ

А) только окислитель

Б) только восстановитель

В) и окислитель, и восстановитель

Г) не проявляет окислительно-восстановительных свойств

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 2143

Установите соответствие между изменением степени окисления хлора в реакции и формулами исходных веществ, которую в нее вступают: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СВОЙСТВА АЗОТАУРАВНЕНИЕ РЕАКЦИИ

2) Cl2 и NaOH(горяч. р-р)

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 2412

Установите соответствие между формулой иона и его способностью проявлять окислительно-восстановительные свойства: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯФОРМУЛЫ ИСХОДНЫХ ВЕЩЕСТВ

1) только окислитель

2) только восстановитель

3) и окислитель, и восстановитель

4) ни окислитель, ни восстановитель

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 2332

Установите соответствие между схемой химической реакции и изменением степени окисления окислителя: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА ИОНАОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3124

Установите соответствие между схемой реакции и изменением степени окисления восстановителя в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ОКИСЛИТЕЛЯ

Г) K2MnO4 + Cl2 → KMnO4 + KCl

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 1543

Установите соответствие между схемой реакции и свойством элемента кислорода, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ВОССТАНОВИТЕЛЯ

1) является окислителем

2) является восстановителем

3) проявляет свойства как окислителя, так и восстановителя

4) не проявляет окислительно-восстановительных свойств

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 1212

Установите соответствие между схемой реакции и свойством элемента серы, которое она проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИСВОЙСТВО КИСЛОРОДА

А) S + KOH(конц.) K2S + K2SO3 + H2O

Б) Cu + Н2SO4(конц.) CuSO4 + SO2 + H2O

1) является окислителем

2) является восстановителем

3) является и окислителем, и восстановителем

4) не проявляет окислительно-восстановительных свойств

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3122

Установите соответствие между схемой реакции и изменением степени окисления окислителя в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИСВОЙСТВО СЕРЫ

Г) BaSO4 + C → BaS + CO

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 2534

Установите соответствие между схемой реакции и свойством элемента хлора, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ОКИСЛИТЕЛЯ

А) Cl2 + NaOH NaCl + NaClO3 + H2O

1) является окислителем

2) является восстановителем

3) является и окислителем, и восстановителем

4) не проявляет окислительно-восстановительных свойств

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3144

Установите соответствие между схемой реакции и изменением степени окисления восстановителя в данной реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИСВОЙСТВО ХЛОРА

А) Cu2O + H2SO4(конц.) CuSO4 + SO2 + H2O

Б) Cu + HNO3(конц.) Cu(NO3)2 + NO2 + H2O

Г) CuCl + H2SO4(конц.) CuSO4 + SO2 + HCl + H2O

Запишите в таблицу выбранные цифры под соответствующими буквами.

Окислительно-восстановительные реакции. Окислитель и восстановитель

Окислительно-восстановительными называют реакции, которые сопровождаются изменением степеней окисления химических элементов, входящих в состав реагентов.

Окислением называют процесс отдачи электронов атомом, молекулой или ионом, который сопровождается повышением степени окисления.

Восстановлением называют процесс присоединения электронов атомом, молекулой или ионом, который сопровождается понижением степени окисления.

Окислителем называют реагент, который принимает электроны в ходе окислительно-восстановительной реакции. (Легко запомнить: окислитель — грабитель.)

Восстановителем называют реагент, который отдаёт электроны в ходе окислительно-восстановительной реакции.

Окислительно-восстановительные реакции делят на реакции межмолекулярного окисления-восстановления, реакции внутримолекулярного окисления-восстановления, реакции диспропорционирования и реакции конмутации.

Для составления окислительно-восстановительных реакций используют метод электронного баланса.

Составление уравнения окислительно-восстановительной реакции осуществляют в несколько стадий.

  1. Записывают схему уравнения с указанием в левой и правой частях степеней окисления атомов элементов, участвующих в процессах окисления и восстановления.
  2. Определяют число электронов, приобретаемых или отдаваемых атомами или ионами.
  3. Уравнивают число присоединённых и отданных электронов введением множителей, исходя из наименьшего кратного для коэффициентов в процессах окисления и восстановления.
  4. Найденные коэффициенты (их называют основными) подставляют в уравнение реакции перед соответствующими формулами веществ в левой и правой частях.

Пример 1. Реакция алюминия с серой. Записываем схему реакции и указываем изменение степеней окисления:

Атом серы присоединяет два электрона, изменяя свою степень окисления от 0 до –2. Он является окислителем. Атом алюминия отдаёт три электрона, изменяя свою степень окисления от 0 до +3. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Подставляем найденные коэффициенты в уравнение реакции и окончательно получаем:

Пример 2. Окисление фосфора хлором. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления хлора изменяется от 0 до –1, при этом молекула хлора присоединяет два электрона. Хлор является окислителем.

Атом фосфора отдаёт пять электронов, изменяя свою степень окисления от 0 до +5. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Электронное уравнение для хлора записывают именно так, поскольку окислителем является молекула хлора, состоящая из двух атомов, и каждый из этих атомов изменяет свою степень окисления от 0 до –1. Коэффициент 5 относится к молекуле хлора в левой части уравнения, а количество атомов хлора в правой части уравнения 5 × 2 = 10.

Подставляем найденные коэффициенты в уравнение реакции и окончательно получаем:

Пример 3. Восстановление оксида железа (II, III) алюминием. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления железа изменяется от +8/3 до 0, при этом три иона железа (поскольку в исходном оксиде их содержится именно три) присоединяют восемь электронов (3 × 8/3 = 8). Железо является окислителем.

Алюминий отдаёт три электрона, изменяя свою степень окисления от 0 до +3. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединенных и отданных электронов:

Электронное уравнение для алюминия записывают именно так, поскольку в состав оксида алюминия входят два атома алюминия. Таким образом, в левой части уравнения основной коэффициент перед оксидом железа (II, III) будет равен 3, а перед алюминием 4 × 2 = 8.

Количество атомов железа в правой части уравнения реакции составит 3 × 3 = 9. Количество молекул оксида алюминия будет равно 8/2 = 4. Окончательно получаем:

Проверяем баланс по кислороду. В левой части уравнения 3 × 4 = 12. В правой части уравнения 4 × 3 = 12. Таким образом, число атомов каждого элемента в отдельности в левой и в правой части химического уравнения равны между собой, и реакция уравнена правильно.

Этот пример наглядно показывает, что дробная степень окисления хотя и не имеет физического смысла, но позволяет правильно уравнять окислительно-восстановительную реакцию.

Очень часто окислительно-восстановительные реакции проходят в растворах в нейтральной, кислой или щелочной среде. В этом случае химические элементы, входящие в состав вещества, образующего среду реакции, свою степень окисления не меняют.

Пример 4. Окисление йодида натрия перманганатом калия в среде серной кислоты. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Атом марганца принимает пять электронов, изменяя свою степень окисления от +7 до +2. Перманганат калия является окислителем.

Два йодид-иона отдают два электрона, образуя молекулу I2 0 . Йодид натрия является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов введением множителей:

Найденные коэффициенты подставим в уравнение реакции перед соответствующими формулами веществ в левой и правой частях.

Серная кислота является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет, но сульфат-анион связывает выделяющиеся в результате реакции катионы калия, натрия и марганца. Подсчитаем число сульфат-ионов в правой части. Оно равно 2 + 1 + 5 = 8. Следовательно, перед серной кислотой следует поставить коэффициент 8. Число атомов водорода в левой части уравнения равно 8 × 2 = 16. Отсюда вычисляем коэффициент для воды: 16/2 = 8.

Таким образом, уравнение реакции будет иметь вид:

Правильность баланса проверяем по кислороду. В левой части его 2 × 4 = 8 (перманганат калия); в правой — 8 × 1 = 8 (вода). Следовательно, уравнение составлено правильно.

Пример 5. Окисление сульфида калия манганатом калия в водной среде. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Ион марганца принимает два электрона, изменяя свою степень окисления от +6 до +4. Манганат калия является окислителем.

Сульфид-ион отдаёт два электрона, образуя молекулу S 0 . Сульфид калия является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов введением множителей:

Основные коэффициенты в уравнении реакции равны единице:

Вода является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет.

Гидроксид-ионы связывают выделяющиеся в результате реакции катионы калия. Таких катионов четыре (2 × 2), число атомов водорода также 4 (4 × 1), поэтому перед молекулой воды ставим коэффициент два (4/2 = 2):

Пример 6. Окисление аммиака хлоратом калия в щелочной среде. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Хлор принимает шесть электронов, изменяя свою степень окисления от +5 до –1. Хлорат калия является окислителем.

Азот отдаёт восемь электронов, изменяя свою степень окисления от –3 до +5. Аммиак является восстановителем.

Составляем уравнение электронного баланса, уравниваем число присоединённых и отданных электронов введением множителей, сокращаем кратные коэффициенты:

Проставляем найденные основные коэффициенты в уравнение реакции:

Гидроксид калия является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет.

Катионы калия связывают выделяющиеся в результате реакции нитрат-ионы. Таких анионов три. Следовательно, перед гидроксидом калия ставим коэффициент три:

Число атомов водорода в левой части уравнения равно девяти в аммиаке (3 × 3) = 9 и трём в гидроксиде калия (3 × 1), а их общее число 9 + 3 = 12. Следовательно, перед водой ставим коэффициент (12/2) = 6. Окончательно уравнение реакции будет иметь вид:

Убеждаемся ещё раз в правильности расстановки коэффициентов, сравнивая число атомов кислорода в левой и правой его частях. Оно равно 15.

Довольно часто одно и то же вещество одновременно является окислителем и создаёт среду реакции. Такие реакции характерны для концентрированной серной кислоты и азотной кислоты в любой концентрации. Кроме того, в подобные реакции, но в качестве восстановителя, вступают галогенводородные кислоты с сильными окислителями.

Пример 7. Окисление магния разбавленной азотной кислотой. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления азота изменяется от +5 до +1, при этом два атома азота присоединяют восемь электронов. Азотная кислота является окислителем.

Магний отдаёт два электрона, изменяя свою степень окисления от 0 до +2. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Подставляем найденные коэффициенты перед окислителем и восстановителем в левой части уравнения реакции и перед продуктами окисления и восстановления в правой части уравнения реакции:

При этом в правой части уравнения реакции имеется 4 × 2 = 8 нитрат-ионов, не изменивших свою степень окисления. Очевидно, что для этого в правую часть уравнения реакции следует добавить ещё 8 молекул HNO3. Тогда общее количество молекул азотной кислоты в правой части уравнения составит 2 + 8 = 10.

В этих молекулах содержатся 10 × 1 = 10 атомов водорода. Такое же количество атомов водорода должно быть и в правой части уравнения. Следовательно, перед молекулой воды следует подставить коэффициент 10/2 = 5, и уравнение окончательно будет иметь вид:

Окончательно проверяем правильность баланса, подсчитывая число атомов кислорода в левой и правой частях уравнения. В левой части 10 × 3 = 30. В правой части (2 × 3) × 4 = 24 в нитрате магния, 1 в оксиде азота (I) и 5 × 1 = 5 в молекуле воды. Итого 24 + 1 + 5 = 30. Таким образом, реакция полностью уравнена.

Пример 8. Взаимодействие соляной кислоты с оксидом марганца (IV). Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления марганца изменяется от +4 до +2, при этом марганец присоединяет два электрона. Оксид марганца (IV) является окислителем.

Два хлорид-иона отдают два электрона, образуя молекулу Cl2 0 , хлористый водород является восстановителем.

Составляем электронное уравнение и уравниваем число присоединённых и отданных электронов, сокращаем кратные коэффициенты:

При этом коэффициент 1 изначально относится к двум хлорид-ионам и к одной молекуле Cl2. Подставляем найденные коэффициенты перед окислителем и восстановителем в левой части уравнения реакции и перед продуктами окисления и восстановления в правой части уравнения реакции:

При этом в правой части уравнения реакции имеется 1 × 2 = 2 хлорид-иона, не изменивших свою степень окисления. Эти хлорид-ионы в окислительно-восстановительной реакции не участвовали. Очевидно, что для этого в правую часть уравнения реакции следует добавить 2 молекулы HCl. Тогда общее количество молекул HCl в правой части уравнения составит 2 + 2 = 4. В этих молекулах будет содержаться 4 × 1 = 4 атома водорода. Такое же количество атомов водорода должно быть и в правой части уравнения. Тогда перед молекулой воды следует подставить коэффициент 4/2 = 2, и уравнение в окончательном виде будет иметь вид:

Проверяем правильность баланса, подсчитывая число атомов кислорода в левой и правой частях уравнения. В левой части оно составляет 1 × 2 = 2 в оксиде марганца (IV), а в правой части 2 × 1 = 2 в молекуле воды. Таким образом, реакция полностью уравнена.

В качестве окислителя могут выступать нейтральные атомы и молекулы, положительно заряженные ионы металлов, сложные ионы и молекулы, содержащие атомы металлов и неметаллов в состоянии положительной степени окисления и др.

Ниже приведены сведения о некоторых наиболее распространенных окислителях, имеющих важное практическое значение.

Кислород. Сильный окислитель, окислительная способность значительно возрастает при нагревании. Кислород взаимодействует непосредственно с большинством простых веществ, кроме галогенов, благородных металлов Ag, Au, Pt и благородных газов, с образованием оксидов:

Взаимодействие натрия с кислородом приводит к пероксиду натрия:

Более активные щелочные металлы (K, Rb, Cs) при взаимодействии с кислородом дают надпероксиды типа ЭО2:

В своих соединениях кислород, как правило, проявляет степень окисления –2. Применяется кислород в химической промышленности, в различных производственных процессах в металлургической промышленности, для получения высоких температур. С участием кислорода идут многочисленные чрезвычайно важные жизненные процессы: дыхание, окисление аминокислот, жиров, углеводов. Только немногие живые организмы, называемые анаэробными, могут обходиться без кислорода.

Реакции, иллюстрирующие окислительные свойства кислорода при его взаимодействии с различными неорганическими веществами, приведены в уроке 14.

Озон. Обладает ещё большей по сравнению с кислородом окислительной способностью. Озон окисляет все металлы, за исключением золота, платины и некоторых других, при этом, как правило, образуются соответствующие высшие оксиды элементов, реже — пероксиды и озониды, например:

Озон окисляет оксиды элементов с промежуточной степенью окисления в высшие оксиды.

Перманганат калия. Является сильным окислителем, широко применяется в лабораторной практике. Характер восстановления перманганата калия зависит от среды, в которой протекает реакция. В кислой среде перманганат калия восстанавливается до солей Mn 2+ , в нейтральной или слабощелочной — до MnO2, а в сильнощелочной он переходит в манганат-ион MnO4 2– . Данные переходы описываются следующими уравнениями

Перманганат калия способен окислять сульфиды в сульфаты, нитриты в нитраты, бромиды и йодиды — до брома и йода, соляную кислоту до хлора и т. д.:

Хромат и бихромат калия. Эти соединения широко применяют в качестве окислителей в неорганических и органических синтезах. Взаимные переходы хромат- и бихромат-ионов очень легко протекают в растворах, что можно описать следующим уравнением обратимой реакции:

Соединения хрома (VI) — сильные окислители. В окислительно-восстановительных процессах они переходят в производные Cr (III). В нейтральной среде образуется гидроксид хрома (III), например:

В кислой среде образуются ионы Cr 3+ :

В щелочной — производные анионного комплекса [Cr(OH)6] 3– :

В качестве восстановителя могут выступать нейтральные атомы, отрицательно заряженные ионы неметаллов, положительно заряженные ионы металлов в низшей степени окисления, сложные ионы и молекулы, содержащие атомы в промежуточной степени окисления, электрический ток на катоде и др.

Ниже приведены сведения о некоторых наиболее распространённых восстановителях, имеющих важное практическое значение.

Углерод. Углерод широко применяют в качестве восстановителя в неорганических синтезах. При этом в качестве продуктов окисления может образовываться углекислый газ, или оксид углерода (II). При восстановлении оксидов металлов могут образовываться свободные металлы, реже — карбиды металлов.

Восстановительные свойства углерод проявляет также в реакции получения водяного газа:

Полученную смесь водорода и оксида углерода (II) широко применяют для синтеза органических соединений.

Оксид углерода (II). Широко применяют в металлургии при восстановлении металлов из их оксидов, например:

Водород. Широко применяют в качестве восстановителя в неорганических синтезах (водородотермия) для получения чистого вольфрама, молибдена, галлия, германия и т. д.:

Тренировочные задания

Используя метод электронного баланса, расставьте коэффициенты, определите окислитель и восстановитель в уравнении реакции, схема которой:

1. Al + H2O + KNO3 + KOH → K[Al(OH)4] + NH3↑.


источники:

http://scienceforyou.ru/reshenie-realnyh-zadanij-egje-2016-goda/okislitelno-vosstanovitelnye-reakcii

http://himi4ka.ru/ogje-2018-po-himii/urok-12-okislitelno-vosstanovitelnye-reakcii-okislitel-i-vosstanovitel.html

СХЕМА РЕАКЦИИИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ВОССТАНОВИТЕЛЯ