Сумма решений линейного дифференциального уравнения является

Линейные дифференциальные уравнения с постоянными коэффициентами

Определения

Линейное дифференциальное уравнение с постоянными коэффициентами – это уравнение, линейное относительно зависимой переменной y и ее производных:
(1) .
Член f ( x ) называется неоднородной частью уравнения.

Линейное однородное дифференциальное уравнение с постоянными коэффициентами – это уравнение вида (1), неоднородная часть которого равна нулю:
.

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами – это уравнение вида (1) с отличной от нуля неоднородной частью:
.

Здесь все коэффициенты a i – постоянные. n – порядок уравнения.

Свойства решений линейных дифференциальных уравнений с постоянными коэффициентами

Однородные уравнения

Рассмотрим линейное однородное дифференциальное уравнение:
(2) .
Общее решение такого уравнения можно записать в виде:
,
где – линейно независимые частные решения уравнения (2). Каждое из них удовлетворят уравнению (2):
.
В этом случае говорят, что функции образуют фундаментальную систему решений линейного однородного уравнения (2).

Фундаментальная система решений линейного однородного уравнения (2) – это n линейно независимых функций , каждая из которых является решением этого уравнения.

Линейно независимые функции – это такие функции, для которых соотношение

может выполняться только если все постоянные равны нулю.

Линейно зависимые функции – это функции, между которыми имеет место линейная зависимость:
,
где – постоянные, из которых хотя бы одна отлична от нуля.

Неоднородные уравнения

Рассмотрим линейное неоднородное дифференциальное уравнение:
(3) .
Пусть Y – частное решение этого уравнения. Тогда общее решение уравнения (3) равно сумме общего решения однородного уравнения плюс частное решение неоднородного:
.
Здесь – общее решение однородного уравнения:
;
Y – частное (любое) решение неоднородного уравнения:
.

Часто встречается случай, когда неоднородная часть может быть представлена в виде суммы функций:
.
Тогда частное решение Y также может быть представлено в виде суммы частных решений:
,
каждое из которых удовлетворяет уравнению с правой частью в виде одной из функций :
.
В некоторых случаях бывает легче решать отдельные частные решения от более простых неоднородных частей, а затем получать частное решение для всего уравнения, суммированием полученных частных решений.

Автор: Олег Одинцов . Опубликовано: 20-07-2013 Изменено: 13-12-2019

Линейные дифференциальные уравнения с постоянными коэффициентами

Линейное дифференциальное уравнение (*) назовём уравнением с постоянными коэффициентами, если в этом уравнении коэффициенты постоянны, то есть ai(x)=const. Тогда соответствующее однородное уравнение L(y)=0 будет иметь вид
. (6)
Решение уравнения (6) будем искать в виде y = e rx . Тогда y’ = r·e rx , y» = r 2 ·e rx ,…, y ( n ) = r n ·e rx . Подставляя в (6), получаем

Пример №1 . Для уравнения y»-3y’ + 2y=0 корни характеристического уравнения r 2 — 3r + 2 = 0 равны r1 = 1, r2 = 2 (корни были найдены через сервис нахождения дискриминанта). Следовательно, фундаментальную систему решений составляют функции y1 = e x , y2 = e 2 x , а общее решение записывается в виде y = C1e x + C2e 2 x .
2. Среди корней характеристического уравнения есть кратные. Предположим, что r1 имеет кратность α, а все остальные различны. Рассмотрим вначале случай r1 = 0. Тогда характеристическое уравнение имеет вид:
an(x)·r n +an-1(x)·r n-1 + . + an-α(x)·r α =0
так как в противном случае r не являлось бы корнем кратности α. Следовательно, дифференциальное уравнение имеет вид:
an(x)·y (n) +an-1(x)·y (n-1) + . + an-α(x)·y α =0
то есть не содержит производных порядка ниже α. Этому уравнению удовлетворяют все функции, у которых производные порядка α и выше равны нулю. В частности, таковыми являются все полиномы степени не выше α-1, например,
1, x, x 2 , …, x α-1 . (9)
Покажем, что данная система линейно независима. Составив определитель Вронского этой системы функций, получим

Пример №2 . Для уравнения y»’-4y»+4y’ = 0 характеристическое уравнение r 3 -4r 2 + 4r = 0 имеет корни r=0 кратности 1 и r=2 кратности 2, так как r 3 -4r 2 + 4r = r(r-2) 2 , поэтому фундаментальной системой решений исходного уравнения является система функций y1 = 1, y2 = e 2 x , y3 = xe 2 x , а общее решение имеет вид y = C1 + C2e 2 x + C3xe 2 x .
3. Среди корней характеристического уравнения есть комплексные корни. Можно рассматривать комплексные решения, но для уравнений с действительными коэффициентами это не очень удобно. Найдём действительные решения, соответствующие комплексным корням. Так как мы рассматриваем уравнение с действительными коэффициентами, то для каждого комплексного корня rj = a+bi кратности α характеристического уравнения комплексно сопряжённое ему число rk = a-bi также является корнем кратности α этого уравнения. Соответствующими этим корням парами решений являются функции yj l =x l ·e (a+b·i)x и yk l =x l ·e (a-b·i)x , l=0,1. α-1. Вместо этих решений рассмотрим их линейные комбинации

Линейные дифференциальные уравнения второго порядка.

Линейное однородное дифференциальное уравнение (ЛОДУ) второго порядка записывают как:

,

а линейное неоднородное дифференциальное уравнение (ЛНДУ) второго порядка записывают как:

,

где функции f(x), p(x) и q(x) являются непрерывными на интервале интегрирования X.

Для понимания того, в каком виде необходимо искать общее решение линейных однородных дифференциальных уравнений и линейных неоднородных дифференциальных уравнений второго порядка необходимо сформулировать 2 теоремы:

Общее решениее y0 ЛОДУ на интервале X с непрерывными коэффициентами на X — линейная комбинация n линейно независимых частных решений линейного однородного дифференциального уравнения с произвольными постоянными коэффициентами , т.е. .

Общим решением y ЛНДУ на интервале X с непрерывными на этом же промежутке X коэффициентами и функцией f(x) является суммой , где y0 — является общим решением решаемого линейного однородного дифференциального уравнения , а — является любым частным решением заданного линейного неоднородного дифференциального уравнения.

  • y0=C1⋅y1+C2⋅y2 — является общим решением ЛОДУ , где y1 и y2 – являются его линейно независимыми частные решения,
  • а — является общим решением ЛНДУ , где — является любым из частных решений уравнения, а y0— является общим решением соответствующего линейного однородного дифференциального уравнения.

Теперь рассмотрим методы определения y1, y2 и .

В самых элементарных примерах эти функции вычисляются методом подбора. Линейно независимые функции y1 и y2 чаще всего определяют из наборов:

Проверить линейную независимость функций y1 и y2 можно при помощи определителя Вронского:

.

Если функции линейно независимы на интервале X, значит, определитель Вронского не равен нулю для всех x из промежутка X.

Например, функции y1 = 1 и y2 = x являются линейно независимыми для всех действительных значений x, потому что

.

Функции y1 = sinx и y2 = cosx тоже являются линейно независимыми на R, потому что

А функции y1 = — x — 1 и y2 = x + 1 являются линейно зависимыми на интервале (-∞; +∞), потому что

В общем случае определение функций y1, y2 и методом подбора достаточно сложно и зачастую невозможно.

Если удастся подобрать нетривиальное (не равное нулю) частное решение y1 линейного однородного дифференциального уравнения 2-го порядка , тогда общее решение этого уравнения можно найти методом понижения степени уравнения до первой при помощи подстановки .

Разберем метод на примере.

Необходимо вычислить общее решение ЛОДУ 2-го порядка .

Хорошо видно, что y1 = x оказывается частным решением исходного уравнения при x не равном нулю. Понижаем степень заданного ЛОДУ используя замену

откуда .

Вспоминая правило дифференцирования произведения и свойства неопределенного интеграла, получаем

.

Интегрируем обе части равенства:

произведя потенцирование, записываем общее решение исходного уравнения

,

где С – является произвольной постоянной.

Т.к. мы принимали , то общее решение заданного линейного однородного дифференциального уравнения второго порядка записывается как:

,

где F(x) является одной из первообразных функции .

В элементарных функциях первообразная F(x) не выражается.

Решая ЛНДУ второго порядка , если получилось вычислить y1 и y2, тогда можно не подбирать . В таком случае общее решение линейного неоднородного дифференциального уравнения можно найти варьируя произвольные постоянные.

Тогда общее решение линейного однородного дифференциального уравнения будет выглядеть так:

Варьируя произвольные постоянные, общим решением линейного неоднородного дифференциального уравнения принимаем

Производные неизвестных функции C1(x) и C2(x) вычисляются из системы уравнений

,

а функции C1(x) и C2(x) вычисляются при дальнейшем интегрировании.


источники:

http://math.semestr.ru/math/lec_diffur_line.php

http://www.calc.ru/Lineynyye-Differentsialnyye-Uravneniya-Vtorogo-Poryadka.html