Суммарное уравнение для раствора соли

Гидролиз солей

Гидролиз (от греч. – вода и – разложение) – это разложение водой. Гидролиз солей – это взаимодействие ионов соли с водой с образованием малодиссоциирующих частиц. Давая такое определение реакции гидролиза, мы подчеркиваем, что соли в растворе находятся в виде ионов и движущей силой реакции является образование малодиссоциирующих частиц (общее правило для многих реакций в растворах).

Всегда ли ионы способны образовывать с водой малодиссоциирующие частицы? Разбирая этот вопрос с учениками, отмечаем, что катионы сильного основания и анионы сильной кислоты таких частиц образовать не могут и, следовательно, в реакцию гидролиза не вступают.

Какие типы гидролиза возможны? Поскольку соль состоит из катиона и аниона, то возможны три типа гидролиза:

• гидролиз по катиону (в реакцию с водой вступает только катион);
• гидролиз по аниону (в реакцию с водой вступает только анион);
• совместный гидролиз (в реакцию с водой вступает и катион, и анион).

Гидролиз по катиону. Как катион может взаимодействовать с водой? Учитель сам должен решить, рассматривать ли ему этот вопрос в общем виде или (в менее сильном классе) на конкретном примере. Отмечаем, что катион – это положительно заряженная частица, а молекула воды полярна, условно можно представить ее состоящей из положительно заряженного атома водорода и отрицательно заряженной гидроксильной группы. Какую же часть молекулы воды оторвет и присоединит к себе катион? Ученики с удовольствием отвечают: «Гидроксильную группу!» Ответ подтверждаем записью уравнения, отмечая обратимость реакции:

M n+ + H–OH MOH (n–1)+ + H + .

Написав формулу образовавшейся частицы, тут же обсуждаем, что это за частица, будет ли она иметь заряд и какой, приходим к выводу, что, как правило, это гидроксокатион. А что останется от молекулы воды? Какую реакцию водного раствора обусловливает избыток этих частиц? Какова будет реакция индикатора? А теперь проверим нашу гипотезу (следует демонстрация опыта).

После этого школьники могут самостоятельно сделать вывод: гидролиз по катиону приводит к образованию гидроксокатионов и кислой среды раствора.

Отмечаем, что иногда (при n = 1) вместо гидроксокатионов получаем молекулы слабого основания. А может ли гидроксокатион вступить в реакцию со следующей молекулой воды? Сообщаем, что это будет вторая ступень гидролиза, что каждая следующая ступень протекает в тысячи раз слабее, чем предыдущая, что даже первая ступень протекает обычно на доли процента. Поэтому, как правило, рассматривается только первая ступень гидролиза.

Гидролиз по аниону разбираем аналогично, записывая уравнение:

An n– + H–OH HAn (n–1)– + OH – .

Подводим учеников к выводу: гидролиз по аниону приводит к образованию гидроанионов и щелочной среды раствора.

Совместный гидролиз. Из самого названия следует, что в этом случае в растворе протекают две выше рассмотренные реакции. Предлагаем школьникам проанализировать их и сделать вывод о реакции среды. Опровергаем (можно экспериментом) представление о том, что среда будет нейтральной. Одинаковое число ионов водорода и гидроксид-ионов существует только на бумаге. На самом деле здесь протекают две независимые обратимые реакции, и каких ионов в растворе окажется больше – зависит от степени протекания каждой реакции. А это, в свою очередь, зависит от того, что слабее – кислота или основание. Если слабее основание, то в большей степени будет протекать гидролиз по катиону и среда раствора будет кислой. Если слабее кислота – наоборот. Как исключение возможен случай, когда среда будет почти нейтральной, но это только исключение.

Одновременно обращаем внимание учащихся на то, что связывание гидроксид-ионов и ионов водорода в воду приводит к уменьшению их концентрации в растворе. Предлагаем вспомнить принцип Ле Шателье и подумать, как это повлияет на равновесие. Подводим их к выводу, что при совместном гидролизе степень его протекания будет значительно выше и в отдельных случаях это может привести к полному гидролизу.

Полный гидролиз. Для полного протекания гидролиза нужно, чтобы соль была образована очень слабой кислотой и очень слабым основанием. Кроме того, желательно, чтобы один из продуктов гидролиза уходил из сферы реакции в виде газа. (Малорастворимые вещества, остающиеся в контакте с раствором, вообще говоря, не уходят из сферы реакции, поскольку все равно в какой-то степени растворимы.) Поэтому полному гидролизу подвергаются обычно соли газообразных или неустойчивых кислот: сероводородной, угольной, отчасти сернистой. К ним примыкают вещества, которые в обычном понимании уже не являются солями: нитриды, фосфиды, карбиды, ацетилениды, бориды. Полностью гидролизуются также алкоголяты.

Если вернуться к обычным солям, то полностью гидролизующиеся соли (карбонаты, сульфиды алюминия, хрома(III), железа(III)) нельзя получить реакциями обмена в водных растворах. Вместо ожидаемых продуктов в результате реакции мы получим продукты гидролиза. Гидролиз осложняет протекание многих других реакций обмена. Так, при взаимодействии карбоната натрия с сульфатом меди в осадок обычно выпадает основный карбонат меди (CuOH)2CO3.

В таблице растворимости для полностью гидролизующихся солей стоит прочерк. Однако прочерк может стоять по другим причинам: вещество не изучено, разлагается в ходе окислительно-восстановительной реакции и т.п. Некоторые прочерки, иногда встречающиеся в таблице растворимости, вызывают удивление. Так, сульфид бария хорошо известен и растворим, как и сульфиды других щелочно-земельных металлов. Гидролиз этих солей протекает только по аниону.

Алгоритм написания уравнений гидролиза

Когда школьники поняли суть реакции гидролиза, даем (а лучше составляем вместе с ними) алгоритм написания уравнений гидролиза. Рассмотрим его на конкретных примерах.

Пример 1. Гидролиз сульфата меди(II)

1. Определяем тип гидролиза. На этом этапе школьники могут написать уравнение диссоциации соли:

CuSO4 = Cu 2+ + .

Можно дать им «правило цепочки»: цепочка рвется по слабому звену, гидролиз идет по иону слабого электролита.

Соль образована катионом слабого основания (подчеркиваем) и анионом сильной кислоты. Идет гидролиз по катиону.

2. Пишем ионное уравнение гидролиза, определяем среду:

Cu 2+ + H–OH CuOH + + H + .

Образуется катион гидроксомеди(II) и ион водорода, среда – кислая.

3. Составляем молекулярное уравнение. Надо учитывать, что составление такого уравнения есть некоторая формальная задача. Из положительных и отрицательных частиц, находящихся в растворе, мы составляем нейтральные частицы, существующие только на бумаге. В данном случае мы можем составить формулу (CuOH)2SO4, но для этого наше ионное уравнение мы должны мысленно умножить на два. Получаем:

2CuSO4 + 2H2O (CuOH)2SO4 + H2SO4.

Обращаем внимание, что продукт реакции относится к группе основных солей. Названия основных солей, как и названия средних, следует составлять из названий аниона и катиона, в данном случае соль назовем «сульфат гидроксомеди(II)». (Не надо приставки «ди», не говорим же мы «сульфат динатрия».) Назвать эту соль «гидроксосульфат меди», на наш взгляд, значит нарушить всю логику номенклатуры солей. Разве есть в растворе или в узлах кристаллической решетки частица «гидроксосульфат»? Нет! А катион гидроксомеди есть. В дальнейшем этот подход распространяется на номенклатуру комплексных солей.

Пример 2. Гидролиз ортофосфата рубидия

1. Определяем тип гидролиза:

Рубидий – щелочной металл, его гидроксид – сильное основание, фосфорная кислота, особенно по своей третьей стадии диссоциации, отвечающей образованию фосфатов, – слабая кислота. Идет гидролиз по аниону.

2. Пишем ионное уравнение гидролиза, определяем среду:

+ H–OH + OH – .

Продукты – гидрофосфат- и гидроксид-ионы, среда – щелочная.

3. Составляем молекулярное уравнение:

Rb3PO4 + H2O Rb2HPO4 + RbOH.

Получили кислую соль – гидрофосфат рубидия.

Пример 3. Гидролиз ацетата алюминия

1. Определяем тип гидролиза:

Соль образована катионом слабого основания и анионами слабой кислоты. Идет совместный гидролиз.

2. Пишем ионные уравнения гидролиза, определяем среду:

Al 3+ + H–OH AlOH 2+ + H + ,

CH3COO – + H–OH CH3COOH + OH – .

Учитывая, что гидроксид алюминия очень слабое основание, предположим, что гидролиз по катиону будет протекать в большей степени, чем по аниону. Следовательно, в растворе будет избыток ионов водорода, и среда будет кислая.

Не стоит пытаться составлять здесь суммарное уравнение реакции. Обе реакции обратимы, никак друг с другом не связаны, и такое суммирование бессмысленно.

3. Составляем молекулярное уравнение:

Al(CH3COO)3 + H2O AlOH(CH3COO)2 + CH3COOH.

Это тоже формальное упражнение, для тренировки в составлении формул солей и их номенклатуре. Полученную соль назовем ацетат гидроксоалюминия.

Факторы, влияющие на степень гидролиза

Поскольку гидролиз – обратимая реакция, то на состояние равновесия гидролиза влияют температура, концентрации участников реакции, добавки посторонних веществ. Если в реакции не участвуют газообразные вещества, то давление практически не влияет. Исключается из рассмотрения вода, т.к. ее концентрация в водных растворах практически постоянна
(

55 моль/л). Так, для примеров 1 и 2 выражения констант равновесия (констант гидролиза) имеют вид:

Температура. Поскольку реакция гидролиза эндотермическая, повышение температуры смещает равновесие в системе вправо, степень гидролиза возрастает.

Концентрация продуктов гидролиза. В соответствии с принципом Ле Шателье повышение концентрации ионов водорода для реакции, рассмотренной в примере 1, приведет к смещению равновесия влево, т.е. степень гидролиза будет уменьшаться. Также будет влиять увеличение концентрации гидроксид-ионов для реакции, рассмотренной в примере 2.

Концентрация соли. Рассмотрение этого фактора приводит к парадоксальному выводу: равновесие в системе смещается вправо (в соответствии с принципом Ле Шателье), но степень гидролиза уменьшается.

Понять это помогает константа равновесия. При добавлении соли, т.е. фосфат-ионов в примере 2, равновесие будет смещаться вправо, концентрации гидрофосфат- и гидроксид-ионов будут возрастать. Но из рассмотрения константы равновесия этой реакции ясно, что, для того чтобы увеличить концентрацию гидроксид-ионов вдвое, нам надо концентрацию фосфат-ионов увеличить в 4 раза! Ведь значение константы должно быть неизменным. А это значит, что степень гидролиза, под которой можно понимать отношение [OH – ]/[], уменьшится вдвое.

Разбавление. Этот фактор означает одновременное уменьшение концентрации всех частиц в растворе (не считая воды). В соответствии с принципом Ле Шателье такое воздействие приводит к смещению равновесия в сторону реакции, идущей с увеличением числа частиц. Реакция гидролиза протекает (без учета воды!) с увеличением числа частиц. Следовательно, при разбавлении равновесие смещается в сторону протекания этой реакции, т.е. вправо, степень гидролиза возрастает. К этому же выводу приведет рассмотрение константы гидролиза.

Добавки посторонних веществ могут влиять на положение равновесия в том случае, когда эти вещества реагируют с одним из участников реакции. Так, при добавлении к раствору сульфата меди в примере 1 раствора гидроксида натрия содержащиеся в нем гидроксид-ионы будут взаимодействовать с ионами водорода. В результате их концентрация уменьшится, и по принципу Ле Шателье равновесие в системе сместится вправо, степень гидролиза возрастет. Если к тому же раствору добавить раствор сульфида натрия, то равновесие сместится не вправо, как можно было бы ожидать (взаимное усиление гидролиза), а влево из-за связывания ионов меди в практически нерастворимый сульфид меди.

Практическое применение

На практике с гидролизом учителю приходится сталкиваться, например, при приготовлении растворов гидролизующихся солей, в частности ацетата свинца. Обычная методика: в колбу наливаем воду, засыпаем соль, взбалтываем. Остается белый осадок. Добавляем еще воды, взбалтываем – осадок не исчезает. Добавляем из чайника горячей воды – осадка кажется еще больше…

Причина в том, что одновременно с растворением идет гидролиз соли, и белый осадок, который мы видим, – это уже продукты гидролиза – малорастворимые основные соли. Все наши дальнейшие действия – разбавление, нагревание – только усиливают степень гидролиза.

Как же подавить гидролиз? Не нагревать, не готовить слишком разбавленных растворов и, поскольку главным образом мешает гидролиз по катиону, добавить кислоты, лучше соответствующей, т.е. уксусной.

В других случаях степень гидролиза желательно увеличить. Например, чтобы сделать щелочной моющий раствор бельевой соды более активным, мы его нагреваем – степень гидролиза карбоната натрия при этом возрастает.

Важную роль играет гидролиз в процессе обезжелезивания воды методом аэрации. При насыщении воды кислородом содержащийся в ней гидрокарбонат железа(II) окисляется до соли железа(III), значительно сильнее подвергающийся гидролизу. В результате происходит полный гидролиз, и железо отделяется в виде осадка гидроксида железа(III).

На этом же основано применение солей алюминия в качестве коагулянтов в процессах очистки воды. Добавляемые в воду соли алюминия в присутствии гидрокарбонат-ионов полностью гидролизуются, и объемистый гидроксид алюминия коагулирует, увлекая с собой в осадок различные примеси.

Гидролиз в заданиях ЕГЭ по химии

ВОПРОС А26 (2003 г.). Фенолфталеин можно использовать для обнаружения в водном растворе соли:

1) ацетата алюминия; 2) нитрата калия; 3) сульфата алюминия; 4) силиката натрия.

Фенолфталеин – индикатор на щелочную среду, в которой он принимает малиновую окраску (возможно, для многих камнем преткновения в этом вопросе стало незнание окрасок индикаторов: фенолфталеина, лакмуса, метилоранжа). В растворе соли щелочная среда может возникнуть при гидролизе по аниону.

1) ацетат алюминия рассмотрен выше, идет совместный гидролиз, среда получается слабокислая;

2) нитрат калия образован сильными кислотой и основанием, гидролиз не идет, среда нейтральная;

3) сульфат алюминия образован сильной кислотой и слабым основанием, гидролиз идет по катиону, среда получается кислая;

4) силикат натрия образован слабой кислотой и сильным основанием, гидролиз идет по аниону, среда получается щелочная:

+ H2O H + OH – .

Ответ. 4.

ВОПРОС A29 (демонстрационный вариант, 2005 г.). Среда раствора карбоната калия:

1) щелочная; 2) кислая; 3) нейтральная; 4) слабокислая.

Рассмотрение аналогичное.

Ответ. 1.

ВОПРОС B5 (демонстрационный вариант, 2005 г.). Установите соответствие между формулой соли и ионным уравнением гидролиза этой соли.

Формула соли:CCCCCИонное уравнение:
1) CuSO4;а) CH3COO – + H2O CH3COOH + OH – ;
2) K2CO3;б) + H2O NH3•H2O + H + ;
3) CH3COONa;в) Сu 2+ + H2O Cu(OH) + + H + ;
4) (NH4)2SO4.г) + H2O H + OH – ;
д) Сu 2+ + 2H2O Cu(OH)2 +2H + .

Пример не слишком удачного вопроса. С одной стороны, трудно на него не ответить, исходя из простого сопоставления формул в левой и правой колонках (про гидролиз можно при этом ничего не знать). С другой стороны, оба ионных уравнения для катиона меди можно считать правильными, но уравнение д) мы бы назвали суммарным для двух стадий гидролиза и отметили бы, что степень протекания реакции по нему чрезвычайно мала. Только на основе этого мы выберем уравнение в).

Ответ. 1 – в; 2 – г; 3 – а; 4 – б.

ВОПРОС В3 (2004 г.). Установите соответствие между условиями и состоянием химического равновесия процесса гидролиза солей.

Условия смещения равновесия:

1) нагревание раствора;
2) добавление продуктов гидролиза;
3) охлаждение раствора;
4) разбавление раствора.

а) смещается влево;
б) смещается вправо;
в) не смещается.

Используем установленные выше закономерности.

Ответ. 1 – б; 2 – а; 3 – а; 4 – б.

ВОПРОС С1 (2004 г.). Как скажется на состоянии химического равновесия в системе

Zn 2+ + H2O ZnOH + + H + – Q:

2) добавление KOH;

3) нагревание раствора?

При ответе на этот вопрос надо учитывать, что добавляемые вещества – электролиты. Поставляемые ими ионы могут как непосредственно влиять на равновесие, так и взаимодействовать с одним из ионов, участвующих в обратимой реакции:

H2SO4 = 2H + + ,

повышение концентрации ионов водорода приводит по принципу Ле Шателье к смещению равновесия в системе влево;

2) добавление KOH:

гидроксид-ионы связывают ионы водорода в малодиссоциирующее вещество – воду
(H + + OH – = H2O); снижение концентрации ионов водорода приводит по принципу Ле Шателье к смещению равновесия в системе вправо;

3) нагревание раствора по принципу Ле Шателье приводит к смещению равновесия в сторону протекания эндотермической реакции, т.е. вправо.

Ответ на все три элемента вопроса оценивался в 3 балла.

Попробуйте самостоятельно ответить на следующие вопросы.

ВОПРОС А26 (2003 г.). Между собой водные растворы сульфата и фосфата натрия можно различить с помощью:

1) гидроксида натрия;
2) серной кислоты;
3) фенолфталеина;
4) фосфорной кислоты.

ВОПРОС В3 (2003 г.). Установите соответствие между названиями солей и средой их растворов.

1) нитрит калия;
2) сульфат железа(II);
3) карбонат калия;
4) хлорид алюминия.

а) кислая;
б) нейтральная;
в) щелочная.

ВОПРОС В3 (2004 г.). Установите соответствие между формулой соли и способностью этой соли к гидролизу.

Способность к гидролизу:

а) гидролиз по катиону;
б) гидролиз по аниону;
в) гидролиз по катиону и аниону;
г) гидролизу не подвергается.

ВОПРОС С1 (2003 г.). Сульфид-ион – типичный протолит. Напишите уравнение протолиза (гидролиза) сульфид-иона в водном растворе по первой ступени. Укажите среду этого раствора. Как скажется добавление гидроксида натрия на степень протолиза сульфид-ионов?

Подводя итог, отметим, что в рамках школьного курса в реакциях гидролиза солей нет ничего чрезмерно сложного для понимания школьника. Здесь используются общие правила написания ионных уравнений, общие представления о смещении химического равновесия, общий подход к номенклатуре солей, краткий и удобный алгоритм написания уравнений. Хочется надеяться, что изложенный материал поможет вам и вашим ученикам.

1. Электролиз расплава хлорида меди (II).

Электродные процессы могут быть выражены полуреакциями:

на катоде K(-): Сu 2+ + 2e = Cu 0

на аноде A(+): 2Cl – — 2e = Cl2

Общая реакция электрохимического разложения вещества представляет собой сумму двух электродных полуреакций, и для хлорида меди она выразится уравнением:

Cu 2+ + 2 Cl – = Cu + Cl2

При электролизе щелочей и солей оксокислот на аноде выделяется кислород:

2. Электролиз расплава хлорида калия:

Электролиз растворов

Совокупность окислительно-восстановительных реакций, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.

источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является «восстановителем».

происходит отдача электронов анионами, поэтому анод является «окислителем».

При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.

При проведении электролиза с использованием инертного (нерасходуемого)

анода (например, графита или платины), как правило, конкурирующими являются два окислительных и два восстановительных процесса:

— окисление анионов и гидроксид-ионов,

— восстановление катионов и ионов водорода.

При проведении электролиза с использованием активного (расходуемого)

анода процесс усложняется и конкурирующими реакциями на электродах являются:

— окисление анионов и гидроксид-ионов, анодное растворение металла — материала анода;

— восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении анода.

При выборе наиболее вероятного процесса на аноде и катоде следует исходить из положения, что будет протекать та реакция, для которой требуется наименьшая затрата энергии. Кроме того, для выбора наиболее вероятного процесса на аноде и катоде при электролизе растворов солей с инертным электродом используют следующие правила:

1. На аноде могут образовываться следующие продукты:

а) при электролизе растворов, содержащих в своем составе анионы SO4 2- , NО — 3, РО4 3- , а также растворов щелочей на аноде окисляется вода и

б) при окислении анионов Сl — , Вr — , I — выделяются соответственно

А + Cl — +e — = Cl 0

2. На катоде могут образовываться следующие продукты:

а) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее Аl 3+ , на катоде восстанавливается вода и

б) если ион металла расположен в ряду напряжений правее водорода, то на катоде

К — Me n+ + ne — = Me 0

в) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений между Al + и Н + , на катоде могут протекать конкурирующие процессы как

восстановления катионов, так и выделения водорода

Пример: Электролиз водного раствора нитрата серебра на инертных электродах

Диссоциация нитрата серебра:

При электролизе водного раствора АgNО3 на катоде происходит восстановление ионов Аg + , а на аноде — окисление молекул воды:

Катод: Аg + + е = А g

Составьте схемы электролиза водных растворов: а) сульфата меди; б) хлорида магния; в) сульфата калия.

Во всех случаях электролиз проводится с использованием угольных электродов.

Пример: Электролиз водного раствора хлорида меди на инертных электродах

Диссоциация хлорида меди:

В растворе находятся ионы Си 2+ и 2Сl — , которые под действием электрического тока направляются к соответствующим электродам:

Катод — Cu 2+ + 2e = Cu 0

Анод + 2Cl — — 2e = Cl2

На катоде выделяется металлическая медь, на аноде — газообразный хлор.

Если в рассмотренном примере электролиза раствора CuCl2 в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления, вместо разрядки ионов Сl 0 и выделения хлора протекает окисление анода (меди).

В этом случае происходит растворение самого анода, и в виде ионов Сu 2+ он переходит в раствор.

Электролиз CuCl2 с растворимым анодом можно записать так:

Электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод. Это свойство широко используется при рафинировании (очистке) металлов от загрязнений.

Пример: Электролиз водного раствора хлорида магния на инертных электродах

Диссоциация хлорида магния в водном растворе:

Ионы магния не могут восстанавливаться в водном растворе

(идет восстановление воды)

Пример: Электролиз водного раствора сульфата меди на инертных электродах

В растворе сульфат меди диссоциирует на ионы:

Ионы меди могут восстанавливаться на катоде в водном растворе.

Сульфат-ионы в водном растворе не окисляются, поэтому на аноде будет протекать окисление воды.

Электролиз водного раствора соли активного металла и кислородсодержащей кислоты (К24) на инертных электродах

Пример: Диссоциация сульфата калия в водном растворе:

Ионы калия и сульфат-ионы не могут разряжаться на электродах в водном растворе, следовательно,

на катоде будет протекать восстановление

аноде — окисление воды.

или, учитывая, что

(осуществляется при перемешивании),

H2O 2H2 + O2

Если пропускать электрический ток через водный раствор соли активного металла и кислородсодержащей кислоты, то ни катионы металла, ни ионы кислотного остатка не разряжаются.

На катоде выделяется водород, а на аноде — кислород, и электролиз сводится к электролитическому разложению воды.

Электролиз расплава гидроксида натрия

проводится всегда в присутствии инертного электролита (для увеличения электропроводности очень слабого электролита — воды):

Закон Фарадея

Зависимость количества вещества, образовавшегося под действием электрического тока, от времени, силы тока и природы электролита может быть установлена на основании обобщенного закона Фарадея:

— масса образовавшегося при электролизе вещества (г);

— эквивалентная масса вещества (г/моль);

— молярная масса вещества (г/моль);

— количество отдаваемых или принимаемых электронов;

— продолжительность процесса (с);

— константа Фарадея, характеризующая количество электричества, необходимое для выделения 1 эквивалентной массы вещества

(F = 96 500 Кл/моль = 26,8 Ач/моль).

Гидролиз неорганических соединений

Взаимодействие ионов соли с водой, приводящее к образованию молекул слабого электролита, называют

Если рассматривать соль как продукт нейтрализации основания кислотой, то можно разделить соли на четыре группы, для каждой из которых гидролиз будет протекать по-своему.

1. Соль, образованная сильным основанием и сильной кислотой KBr, NaCl, NaNO3)

, гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется. Реакция среды остается нейтральной.

2. В соли, образованной слабым основанием и сильной кислотой FeCl2, NH4Cl, Al2(SO4)3, MgSO4)

гидролизу подвергается катион:

FeCl2 + HOH → Fe(OH)Cl + HCl

Fe 2+ + 2Cl — + H + + OH — → FeOH + + 2Cl — + Н +

В результате гидролиза образуется слабый электролит, ион H + и другие ионы. рН раствора

3. Соль, образованная сильным основанием и слабой кислотой (КClO, K2SiO3, Na2CO3, CH3COONa)

подвергается гидролизу по аниону, в результате чего образуется слабый электролит, гидроксид ион и другие ионы.

2K + +SiO3 2- + Н + + ОH — → НSiO3 — + 2K + + ОН —

рН таких растворов > 7 ( раствор приобретает щелочную реакцию).

гидролизуется и по катиону, и по аниону. В результате образуется малодиссоциирующие основание и кислота. рН растворов таких солей зависит от относительной силы кислоты и основания.

Алгоритм написания уравнений реакций гидролиза соли слабой кислоты и силиного основания

Различают несколько вариантов гидролиза солей:

1. Гидролиз соли слабой кислоты и сильного основания:

Пример 1. Гидролиз ацетата натрия.

или CH3COO – + Na + + H2O ↔ CH3COOH + Na + + OH –

Так как уксусная кислота слабо диссоциирует, ацетат-ион связывает ион H + , и равновесие диссоциации воды смещается вправо согласно принципу Ле Шателье.

В растворе накапливаются ионы OH — ( pH >7)

Если соль образована многоосновной кислотой, то гидролиз идет ступенчато.

Если соль образована многоосновной кислотой, то гидролиз идет ступенчато.

Например, гидролиз карбоната:

Практическое значение обычно имеет только процесс, идущий по первой ступени, которым, как правило, и ограничиваются при оценке гидролиза солей.

Равновесие гидролиза по второй ступени значительно смешено влево по сравнению с равновесием первой ступени, поскольку на первой ступени образуется более слабый электролит (HCO3 – ), чем на второй (H2CO3)

Пример 2 . Гидролиз ортофосфата рубидия.

1. Определяем тип гидролиза:

Рубидий – щелочной металл, его гидроксид — сильное основание, фосфорная кислота, особенно по своей третьей стадии диссоциации, отвечающей образованию фосфатов, — слабая кислота.

Идет гидролиз по аниону.

2. Пишем ионное уравнение гидролиза, определяем среду:

Продукты — гидрофосфат- и гидроксид-ионы, среда – щелочная.

3. Составляем молекулярное уравнение:

Получили кислую соль – гидрофосфат рубидия.

Алгоритм написания уравнений реакций гидролиза соли сильной кислоты и слабого основания

2. Гидролиз соли сильной кислоты и слабого основания:

Пример 1. Гидролиз нитрата аммония.

В случае многозарядного катиона гидролиз протекает ступенчато, например:

I ступень : Cu 2+ + HOH ↔ CuOH + + H +

II ступень : CuOH + + HOH ↔ Cu(OH)2 + H +

При этом концентрация ионов водорода и pH среды в растворе также определяются главным образом первой ступенью гидролиза.

Пример 2. Гидролиз сульфата меди(II)

1. Определяем тип гидролиза.

На этом этапе необходимо написать уравнение диссоциации соли:

Соль образована катионом слабого основания (подчеркиваем) и анионом сильной кислоты.

Идет гидролиз по катиону.

2. Пишем ионное уравнение гидролиза, определяем среду:

Cu 2+ + H-OH ↔ CuOH + + H + .

Образуется катион гидроксомеди(II) и ион водорода,

3. Составляем молекулярное уравнение.

Надо учитывать, что составление такого уравнения есть некоторая формальная задача. Из положительных и отрицательных частиц, находящихся в растворе, мы составляем нейтральные частицы, существующие только на бумаге. В данном случае мы можем составить формулу (CuOH)2SO4, но для этого наше ионное уравнение мы должны мысленно умножить на два.

Обращаем внимание, что продукт реакции относится к группе основных солей. Названия основных солей, как и названия средних, следует составлять из названий аниона и катиона, в данном случае соль назовем «сульфат гидроксомеди(II)».

Алгоритм написания уравнений реакций гидролиза соли слабой кислоты и слабого основания

3. Гидролиз соли слабой кислоты и слабого основания:

Пример 1. Гидролиз ацетата аммония.

В этом случае образуются два малодиссоциированных соединения, и pH раствора зависит от относительной силы кислоты и основания.

Если продукты гидролиза могут удаляться из раствора, например, в виде осадка или газообразного вещества, то гидролиз протекает до конца.

Пример 2. Гидролиз сульфида алюминия.

2А l 3+ + 3 S 2- + 6Н2О = 2Аl(OН)3(осадок) + ЗН2S (газ)

Пример 3. Гидролиз ацетата алюминия

1. Определяем тип гидролиза:

Соль образована катионом слабого основания и анионами слабой кислоты.

2. Пишем ионные уравнения гидролиза, определяем среду:

Al 3+ + H–OH ↔ AlOH 2+ + H + ,

Учитывая, что гидроксид алюминия очень слабое основание, предположим, что гидролиз по катиону будет протекать в большей степени, чем по аниону.

Следовательно, в растворе будет избыток ионов водорода, и среда будет кислая.

Не стоит пытаться составлять здесь суммарное уравнение реакции. Обе реакции обратимы, никак друг с другом не связаны, и такое суммирование бессмысленно.

3 . Составляем молекулярное уравнение:

Это тоже формальное упражнение, для тренировки в составлении формул солей и их номенклатуре. Полученную соль назовем ацетат гидроксоалюминия.

Алгоритм написания уравнений реакций гидролиза соли сильной кислоты и сильного основания

4. Соли, образованные сильной кислотой и сильным основанием

, гидролизу не подвергаются, т.к. единственным малодиссоциирующим соединением является H2O.

Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален.

Уравнения электродных процессов, протекающих при электролизе водных растворов солей

Задача 688.
Написать уравнения электродных процессов, протекающих при электролизе водных растворов ВаСI2 и РbNO3)2 с угольными электродами.
Решение:
а) электролиз водного раствора ВаСI2

ВаСI2 – соль активного металла и кислородной кислоты. Стандартный электродный потенциал системы: Ba 2+ = 2 Ba(-2,90 В) значительно отрицательнее потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением газообразного водорода:

2H2O + 2 ⇔ H2↑ + 2ОH —

На аноде будет происходить электрохимическое окисление хлора, стандартный потеннциал которого (+1,36 В) выше, чем воды (+1,23 В). Хлор будет окисляться, потому что наблюдается значительное перенапряжение процесса окисления воды, материал анода оказывает тормозящее воздействие на его протекание:

2Cl — — 2 = 2Cl*
Cl* + Cl* = Cl2

Сложив уравнения катодного и анодного процессов, получим суммарное уравнение:

Таким образом, при электролизе водного раствора хлорида бария одновременно с выделением газообразного водорода (катод) и газообразного хлора (анод), образуется гидроксид бария (катодное пространство).

б) электролиз водного раствора Рb(NO3)2

Рb(NO3)2 – соль средней активности металла и кислородной кислоты, которая в водном растворе диссоциирует по схеме:

Стандартный электродный потенциал электрохимической системы Pb 2+ /Pb (-0,13В) положительнее потенциала водородного электрода в нейтральной среде (-0,41 В) незначительно. Поэтому на катоде будет выделяться свинец 0 (2H + /H2) > 0 (Pb 2+ /Pb):

Pb2+ + 2 ⇔ Pb 0

На аноде будет происходить электрохимическое окисление воды, приводящее к выделению кислорода:

2H2O — 4 = O2↑ + 4H +

Ионы NO3 -, движущиеся при гидролизе к аноду, будут накапливаться в анодном пространстве. Умножим уравнение катодного процесса на два и сложим его с уравнением анодного процесса, получим суммарное уравнение:

2Pb 2+ + 2H2O = 2Pb + O2↑ + 4H +
у катода у анода

Приняв во внимание, что одновременно происходит накопление ионов NO3 — в анодном пространстве, суммарное уравнение процесса можно записать в следующей форме:

Таким образом, при электролизе водного раствора соли нитрата свинца одновременно с выделением свинца (катод) и газообразного кислорода (анод), образуется азотная кислота (анодное пространство).

Задача 689.
Написать уравнения электродных процессов, протекающих при электролизе водных растворов FeCl3 и Са(NO3)2 с инертным анодом.
Решение:
а) Электролиз водного раствора FeCl3

В водном растворе соль FeCl3 диссоциирует по схеме: FeCl3 ⇔ Fe 3+ + 3Cl — . Стандартный электродный потенциал системы Fe 3+ + 3 = Fe 0 (-0,04 В) положительнее потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление ионов Fe3+:

Fe 3+ + 3 = Fe 0

На аноде будет происходить электролитическое окисление ионов хлора с образованием свободных атомов хлора, которые, соединяясь друг с другом, образуют молекулу хлора:

2Cl — — 2 = 2Cl*
Cl* + Cl* = Cl2

Сложим, предварительно умножив уравнение катодного процесса на два и на три уравнения анодного процессов, получим суммарное уравнение:

2Fe 3+ + 6Cl — = 2Fe + 3Cl2

При электролизе FeCl3 в водном растворе с инертными электродами образуются металлическое железо, и выделяется газообразный хлор.

б) Электролиз водного раствора Са(NO3)2

Са(NO3)2 в водном растворе диссоциирует по схеме:

Стандартный электродный потенциал системы Ca 2+ + 2 = Ca (-2,87 В) значительно отрицательнее потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением газообразного водорода:

2H2O + 2 ⇔ H2↑ + 2ОH — ,

а ионы кальция Са 2+ , приходящие к катоду, будут накапливаться в прилегающей к нему части раствора (катодное пространство). На аноде будет происходить электрохимическое окисление воды, приводящее к выделению кислорода:

2H2O — 4 ⇔ O2↑ + 4ОH —

Иионы NO3 — на аноде разряжаться не будут, а будут накапливаться в анодном пространстве.

Умножив уравнение катодного процесса на два, и сложив, его с уравнением анодного процесса получим суммарное уравнение электролиза:

Приняв во внимание, что одновременно происходить накопление ионов кальция в катодном пространстве и нитрат-ионов в анодном пространстве, суммарное уравнение процесса можно записать в следующей форме:

Молекулярная реакция после приведения членов, получим:

Таким образом, при электролизе раствора соли нитрата кальция одновременно с выделением водорода и кислорода образуется гидроксид кальция (в катодном пространстве) и азотная кислота (в анодном пространстве).


источники:

http://examchemistry.com/content/lesson/himreakcii/electrolizgidroliz.html

http://buzani.ru/zadachi/khimiya-glinka/1237-elektrodnye-protsessy-pri-elektrolize-solej-zadachi-688-689