Сущность метода конечных разностей для одномерного уравнения теплопроводности

Уравнение теплопроводности в конечных разностях.

Процесс теплопроводности в материальных слоях конструкции подчиняется закону Фурье, уравнение которого в дифференциальной форме рассматривается в курсе теплопередачи. В строительной теплотехнике задачи теплопроводности часто решаются инженерными методами, в которых используется конечно-разностная форма записи этого уравнения.

Вывод уравнения теплопроводности в конечных разностях удобно проследить на примере одномерного температурного поля при передаче тепла через однородную стенку.

Стенка разбивается на элементарные слои конечного размера Δх. Принято считать, что тепловая емкость каждого элементарного слоя сосредоточена в его центре, а проводимость тепла материалом между слоями характеризуется сопротивлением теплопроводности между центрами слоев. Полученная тепловая цепочка состоит из тепловых емкостей, соединенных между собой термическими сопротивлениями.

Процесс нестационарной передачи в толще определяется двумя законами: проводимости и аккумуляции тепла. Согласно закону проводимости тепловой поток пропорционален градиенту температуры

Для участка стены между осями элементарных слоев это уравнение можно написать в виде

В уравнении принято, что температуры в центрах равны средним (интегральным) температурам по толщине элементарных слоев. Такое предположение строго справедливо только для линейного распределения температур в условиях стационарной передачи тепла.

Для нестационарных условий, учитывая криволинейное распределение температуры в слоях, уравнение является приближенным.

При переходе к тепловой цепочке уравнение проводимости между

ее узлами может быть записано в виде

где Rn-1,n— сосредоточенное термическое сопротивление между узлами n- 1 и n; tn-1 и tn-температуры в узлах тепловой цепочки, где сосредоточены теплоемкости.

Уравнение для тепловой цепочки справедливо как для стационарных, так и нестационарных условий.

Закон аккумуляции тепла устанавливает, что при ращение количества тепла dQ, аккумулированного слоем dx, пропорционально приращению во времени его температуры

где ср – объемная теплоемкость материала.

Изменение количества аккумулированного тепла ΔQ для элементарного слоя толщиной Δх при изменении во времени z его средней температуры на Δzt равно

Для тепловой цепочки уравнение аккумуляции тепла может быть

записано в виде

где С = срΔх — сосредоточенная тепловая емкость элементарного слоя; Δzt -изменение во времени (z) температуры в центре элементарного слоя в сечении расположения сосредоточенной емкости.

Составим уравнение теплового баланса элементарного слоя n при распределении температур в сечении, отмеченном на рисунке tox. Слой n обменивается теплом с соседними элементарными слоями и согласно закону проводимости за время Δz он получит от слоя n + 1 количество тепла

и отдаст слою n -1 количество тепла

Разность ΔQn между количествами тепла, определенными этими уравнениями, будет аккумулирована слоем n и повысит его среднюю температуру на Δztn .

Уравнение теплового баланса слоя n можно написать в виде

которое после преобразований может быть записано

где

является второй конечной разностью температур, т. е. разностью разностей температур между элементарными слоями. Индекс х показывает, что изменение температуры в пространстве происходит по координате х.

При переходе к пределу и замене конечных разностей бесконечно малыми приращениями из уравнения получаем дифференциальное уравнение Фурье

Применительно к тепловой цепочке уравнения теплопроводности в конечных

Множитель в виде комплекса величин в левой части этого уравнения является обратной величиной критерия гомохронности (Фурье) процесса, написанного для элементарного слоя Δх и расчетного интервала времени Δz. После подстановки значений этот множитель можно преобразовать и заменить обозначением критерия Фурье:

а — коэффициент температуропроводности.

Тогда уравнение теплопроводности в конечных разностях принимает вид

В этой записи уравнения критерий подобия Фурье является обобщенной пространственно-временной координатой процесса, так как его значением определяется изменение температуры и в пространстве и во времени.

Дата добавления: 2014-12-03 ; просмотров: 12 ; Нарушение авторских прав

Уравнение теплопроводности

Ранее (см. разд. 2.1.2, 2.1.3) уже были построены и исследованы разностные схемы решения смешанной задачи для одномерного уравнения теплопроводности:

(2.75)

Были получены две двухслойные схемы — явная (2.3) и неявная (2.4). В явной схеме значения сеточной функции на верхнем (j + 1)-ом слое вычисляли с помощью решения на нижнем слое [соотношение (2.13)]. Для нахождения решения на (j + 1)-м слое по неявной схеме была получена трехдиагональная система линейных алгебраических уравнений (2.22), которую решают методом прогонки.

Неявная схема безусловно устойчива, явная схема устойчива при выполнении условия

Обе схемы сходятся к решению исходной задачи со скоростью .

Схемы (2.3), (2.4) построены для случая, когда значения искомой функции (температуры) Uна границах х = 0, х = 1определяются заданными функциями . Однако граничные условия в смешанной задаче (2.75) могут быть и иными, в них может входить производная искомой функции. Например, если конец стержня х=0 теплоизолирован, то условие имеет вид

В этом случае, как и при решении волнового уравнения, данное условие нужно записывать в схемах (2.3), (2.4) в разностном виде.

Перейдем теперь к построению разностных схем для уравнения теплопроводности с двумя пространственными переменными. Примем для простоты а = 1. Тогда это уравнение можно записать в виде

(2.76)

Пусть при t=0 начальное условие задано в виде

(2.77)

В отличие от волнового уравнения, требующего два начальных условия, в уравнение теплопроводности входит только первая производная по t, и необходимо задавать одно начальное условие.

Часто задачи теплопроводности или диффузии, описываемые двумерным уравнением (2.76), решаются в ограниченной области. Тогда, кроме начального условия (2.77), нужно формулировать граничные условия. В частности, если расчетная область представляет прямоугольный параллелепипед (рис. 2.24), то нужно задавать граничные условия на его боковых гранях. Начальное условие (2.77) задано на нижнем основании параллелепипеда.

Рис. 2.24. Расчетная область

Введем простейшую сетку с ячейками в виде прямоугольных параллелепипедов, для чего проведем три семейства плоскостей: хi= ih1(i=0,1. I), (j=0,1. J), . Значение сеточной функции в узлах обозначим символом . С помощью этих значений можно построить разностные схемы для уравнения (2.76).

Рассмотренные выше схемы для одномерного уравнения легко обобщаются на двумерный случай.

Построим явную разностную схему, шаблон которой изображен на рис. 2.25. Аппроксимируя производные отношениями конечных разностей, получаем следующее сеточное уравнение:

Рис. 2.25. Шаблон двумерной схемы

Отсюда можно найти явное выражение для значения сеточной функции на (k + 1)-ом слое:

(2.78)

Условие устойчивости имеет вид

(2.79)

При получается особенно простой вид схемы (2.78):

(2.80)

Полученная схема сходится со скоростью

Формулы (2.78) или (2.80) представляют собой рекуррентные соотношения для последовательного вычисления сеточной функции во внутренних узлах слоев k = 1,2. К. На нулевом слое используется начальное условие (2.77), которое записывается в виде

(2.81)

Значения в граничных узлах вычисляют с помощью граничных условий.

Алгоритм решения смешанной задачи для двумерного уравнения теплопроводности изображен на рис. 2.26. Здесь решение хранится на двух слоях: нижнем (массив ) и верхнем (массив ). Блоки граничных условий необходимо сформировать в зависимости от конкретного вида этих условий. Результаты выводят на каждом слое, хотя можно ввести шаг выдачи (см. рис. 2.13).

Рис. 2.26. Алгоритм решения двумерного уравнения теплопроводности

Построим теперь абсолютно устойчивую неявную схему для решения уравнения (2.76), аналогичную схеме (2.4) для одномерного уравнения теплопроводности. Аппроксимируя в (2.76) вторые производные по пространственным переменным на (k + 1)-ом слое, получаем следующее разностное уравнение:

(2.82)

Это уравнение можно записать в виде системы линейных алгебраических уравнений относительно значений сеточной функции на каждом слое:

(2.83)

К этой системе уравнений нужно добавить граничные условия для определения значений сеточной функции в граничных узлах (т.е. при i= 0, I; j = 0, J). На нулевом слое решение находится из начального условия (2.77), представленного в виде (2.81).

Система (2.83), полученная для двумерного уравнения теплопроводности, имеет более сложный вид, чем аналогичная система (2.22) для одномерного случая, которую можно решить методом прогонки. Таким образом, распространение неявной схемы на многомерный случай приводит к значительному усложнению вычислительного алгоритма и увеличению объема вычислений.

Недостатком явной схемы (2.78) является жесткое ограничение на шаг по времени τ, вытекающее из условия (2.79). Существуют абсолютно устойчивые экономичные разностные схемы, позволяющие вести расчет со сравнительно большим значением шага по времени и требующие меньшего объема вычислений. Две из них будут рассмотрены в разд. 2.3.3.

Теплопроводность при нестационарном температурном поле

Решить задачу теплопроводности при нестационарном температурном поле – значить установить зависимость между температурой t, временем и координатами тела x,y,z. Такая зависимость получается решением дифференциального уравнения теплопроводности при определенных условиях однозначности.

При отсутствии внутренних источников тепла дифференциальное уравнение теплопроводности имеет вид

. (54)

Уравнение (54) является линейным, однородным дифференциальным уравнением второго порядка в частных производных. Решения такого уравнения обладают свойством наложения аналогично решениям обыкновенного однородного дифференциального уравнения: если t1 и t2 — частные решения уравнения, то выражение является также его решением при произвольных значениях постоянных С1 и С2. Поскольку у постоянных С1, и С2 возможны различные значения, уравнение типа (54) может иметь бесконечно большое количество частных решений.

Для решения уравнения теплопроводности, удовлетворяющего заданным условиям однозначности, берут сумму частных решений, в которых постоянные Сi имеют определенные значения. Соответствующим подбором постоянных Ci, удовлетворяют решение исходному дифференциальному уравнению и условиям однозначности.

К классическим методам решения уравнения теплопроводности относятся метод разделения переменных и метод источников.

Метод разделения переменных. По этому методу решается уравнение теплопроводности, а затем, исходя из начальных и граничных условий, определяются постоянные в общем решении. Частное решение t выражается произведением двух функций, одна из которых U(τ) зависит только от времени τ, а другая P(x,y,z) зависит только от координат

, (55)

где С – произвольная постоянная.

Подставляя решение (55) в уравнение (54) получим

. (56)

Уравнение (56) можно переписать так

. (57)

Левая часть уравнения(57) может зависеть только от или быть постоянным числом; она не зависит от координат. Правая часть может зависеть от координат или быть постоянным числом; она не зависит от времени. Поскольку уравнение (57) справедливо при любых значениях времени и координат, то правая и левая части его равны постоянной величине, которую обозначим через D.

Таким образом, мы получим два дифференциальных уравнения для определения вида функций U(τ) и P(x,y,z):

; . (58)

Решением уравнения (58) является

, (59)

где С – постоянная интегрирования.

Постоянная величина D выбирается из физических соображений. В большинстве случаев при нагревании или охлаждении тел по истечении длительного времени температура распределяется в теле определенным образом. Для тепловых процессов, стремящихся к тепловому равновесию, величина D не может быть положительной, потому что можно задать такой промежуток времени, при котором температура в теле будет стремиться к бесконечности, что физически невозможно. Величина D не может равняться нулю, так как при D=0 функция U(τ) в уравнении (59) имела бы постоянное значение, а температура тела не зависела бы от времени, как это следует из уравнения (55), что не реально.

Таким образом, из физических соображений следует, что величина D может быть отрицательной или мнимой величиной. Последний случай будет при условии, что температура тела есть периодическая функция времени, тогда экспонента (59) будет периодической функцией времени.

Рассматривая случай, когда D

(65)

. (65а)

Таким образом, количество теплоты Q не зависит от времени. Оно равно произведению площади, ограниченной кривой G и осью абсцисс x, на объемную теплоемкость cp.

Функцию называют фундаментальным решением уравнения теплопроводности, поскольку она удовлетворяет этому уравнению. В самом деле, для неограниченного тела при одномерном потоке теплоты уравнение (54) имеет вид

. (66)

Если функция G является решением уравнения (66), его можно записать так

. (67)

Пользуясь уравнением (64), найдем выражения для и :

(68)

. (69)

Сопоставление последних двух выражений показывает, что действительно справедливо уравнение (67).

Преобразование Лапласа.Преобразование Лапласа приводит к операционному методу решения линейных и нелинейных дифференциальных уравнений. В этом методе краевые условия используются в начальной стадии решения, что во многих случаях исключает необходимость определения произвольных постоянных.

Преобразование Лапласа функции , обозначаемое символом , называется операцией умножения на с последующим интегрированием по в интервале от 0 до

. (70)

Величина u может быть действительной и мнимой; в обоих случаях ее действительная часть должна быть достаточно велика, чтобы обеспечить сходимость интеграла.

Выражение называется изображением оригинала, т.е. функции . Таким образом, изображения различных функций могут быть получены непосредственным интегрированием. Например, если = , то изображение этой функции будет

. (71)

Обратное изображение дает начальную функцию. Например, называется исходной функцией, или оригиналом изображения .

Преобразования Лапласа первой и второй производных функций определяются соотношениями:

(72)

(73)

В этих изображениях и ее производная представляют граничные условия, которым должна удовлетворять функция .

Интеграл Лапласа (71) и соотношения (72) и (73) можно использовать для интегрирования дифференциальных уравнений.

Метод конечных разностей.Метод конечных разностей часто используют для решения задач нестационарной теплопроводности, особенно при нагревании или охлаждении тел простой геометрической формы. В основе этого метода лежит допущение о возможности замены, например в уравнении теплопроводности, бесконечно малых изменений температуры во времени и пространстве малыми, но конечными ее изменениями. Тем самым протекающий непрерывно процесс изменения температуры в теле при его нагревании или охлаждении заменяется совокупностью скачкообразных процессов.

В случае одномерного нестационарного температурного поля уравнение теплопроводности заменяется уравнением в конечных разностях

. (74)

Решение уравнения (74) может быть выполнено аналитический и графически.

Численный метод. В основу численного метода определения распределения температуры положено уравнение теплопроводности в конечных разностях, с помощью которого вычисляют температуру в фиксированных точках тела. Для применения численного метода рассматриваемое тело разбивают на ряд элементарных объемов, и центральным точкам каждого объема присваивается номер. Предполагается, что тепловые свойства каждого такого объема сосредоточены в его центральной узловой точке и, что передача теплоты между узловыми точками осуществляется через условные теплопроводящие стержни. В нестационарном состоянии в каждом элементарном объеме подвод и отвод теплоты сопровождается изменением внутренней энергии, причем величина этого изменения зависит от изменения температуры в элементарном объеме в течение рассматриваемого промежутка времени, его теплоемкости, плотности и массы.

Рассмотрим применение численного метода к расчету распределения температуры в плоской стенке. Разбивая стенку на элементарные объемы V=δ·δ·1=δ 2 (рис. 4а,б), где δ – сторона элементарного объема.

Количество теплоты, подводимое к узловой точке в соответствии с законом Фурье, равно . При малой величине δ тепловой поток q можно выразить через конечные разности

Рис. 4. Разбиение и числовая сетка определения нестационарного температурного поля а – одномерное температурное поле; б – двухмерное температурное поле

(75)

где Δt – разность температур между смежными узловыми точками

Общее количество теплоты за время Δτ равно

(76)

Изменение внутренней энергии в данной узловой точке за время Δτ согласно первому началу термодинамики определяется следующим образом

(77)

где t – температура в рассматриваемой узловой точке в момент времени τ;

– температура в той же точке в момент времени ; V – объем элементарного участка.

Уравнение теплового баланса в конечных разностях для узловой точки 1 (см. рис. 4а) можно записать в виде

. (78)

С учетом (76) уравнение (78) принимает вид

(79)

Разделим уравнение (79) на и с учетом того, что и — критерий Фурье (безразмерное время) искомая температура в рассматриваемой точке 1 в последующий интервал времени будет равна

. (80)

В случае двухмерного температурного поля тело разбивается на элементарные объемы с размерами ячеек ; расчетная схема узловых точек показана на рис. 4б.

В соответствии с рис. 4б искомое уравнение температуры для точки 5 запишется в виде

. (81)

Уравнения (80 и 81) являются основой численного метода расчета нестационарной теплопроводности одномерного и двухмерного тела.

В качестве примера приведем расчет нестационарной теплопроводности одномерного тела методом разделения переменных.


источники:

http://3ys.ru/metody-resheniya-differentsialnykh-uravnenij/uravnenie-teploprovodnosti.html

http://mydocx.ru/1-37887.html

Читайте также:
  1. Адиабатический процесс. Уравнение Пуассона.
  2. Бегущие волны описываются [1] волновым уравнением
  3. В МЕТОДЕ КОНЕЧНЫХ ЭЛЕМЕНТОВ
  4. В приближении идеального газа уравнение Клапейрона -Клаузиуса примет вид
  5. Второе уравнение Максвелла является обобщением …: закона электромагнитной индукции
  6. Где a — коэффициент трения. Это уравнение может быть переписано в виде
  7. Гидростатика. Основные свойства гидростатического давления. Основное уравнение гидростатики.
  8. Дифференциальное уравнение
  9. Дифференциальное уравнение вынужденных колебаний
  10. Дифференциальное уравнение. Характеристический полином.