Сведение к одному дифференциальному уравнению высшего порядка

Сведение системы к одному дифференциальному уравнению высшего порядка

Системой дифференциальных уравнений называется совокупность уравнений, в каждое из которых входит независимая переменная, искомые функции и их производные.

Решение системы, состоящей из нескольких уравнений с таким же числом неизвестных функций, можно привести к решению дифференциального уравнения с одной неизвестной функцией.

Нормальная система уравнений:

как правило, может быть заменена одним дифференциальным уравнением, порядок которого равен порядку системы.

Пример:

Найти общее решение системы уравнений

Решение:

Продифференцировав первое уравнение по , заменим производную ее выражением из второго уравнения: . Продифференцировав полученное уравнение еще раз, заменим производную ее выражением из третьего уравнения: . Подставляя в последнее уравнение и , окончательно получим . Решим это уравнение. Соответствующее ему характеристическое уравнение имеет корни . Следовательно, . Функции и в соответствии с соотношениями и после дифференцирования полученного для выражения имеют вид: и .

На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:

Возможно вам будут полезны эти страницы:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Метод исключения — сведение системы ДУ к одному уравнению

Частным случаем канонической системы дифференциальных уравнений является одно уравнение n-го порядка, разрешенное относительно старшей производной.

Введением новых функций

это уравнение заменяется нормальной системой уравнений

Можно утверждать и обратное, что, вообще говоря, нормальная система уравнений первого порядка

эквивалентна одному уравнению порядка . На этом основан один из методов интегрирования систем дифференциальных уравнений — метод исключения .

Проиллюстрируем этот метод на примере системы двух уравнений:

Здесь — постоянные коэффициенты, а и — заданные функции; и — искомые функции. Из первого уравнения системы (1) находим

Подставляя во второе уравнение системы вместо у правую часть (2), а вместо производную от правой части (2), получаем уравнение второго порядка относительно

где — постоянные. Отсюда находим . Подставив найденное выражение для и в (2), найдем .

Пример 1. Проинтегрировать систему уравнений

Решение. Из первого уравнения системы (3) находим , тогда

Подставляя (4) во второе уравнение системы (3), получаем линейное дифференциальное уравнение с постоянными коэффициентами второго порядка

Общее решение уравнения (5)

Находя производную по от (6), получаем

Общее решение системы (3):

Пример 2. Решить задачу Коши для системы

Решение. Из второго уравнения системы (7) находим

Подставляя (9) и (10) в первое уравнение системы (7), получаем уравнение , общее решение которого

Подставляя (11) в (9), найдем . Общее решение системы (7)

При начальных условиях (8) из (12) получим систему уравнений для определения

решая которую, найдем . Подставляя эти значения и в (12), получаем решение поставленной задачи Коши:

Пример 3. Решить систему уравнений

Решение. Из первого уравнения системы находим

Подставляя эти выражения для и во второе уравнение, получаем

Считая , из последнего уравнения имеем и после интегрирования получим . Теперь легко находим

Общее решение данной системы

Замечание. Не всякая система дифференциальных уравнений может быть сведена к одному уравнению более высокого порядка. Например,

не сводится к одному уравнению второго порядка. Ее общее решение .


источники:

http://mathhelpplanet.com/static.php?p=metod-isklyucheniya