Свойства чугуна и стали примеры уравнений

Реферат: Сравнительная характеристика чугуна и стали

Содержание

1. Характеристика материалов

2. Сравнение свойств чугуна и стали

2.1 Физико-химические свойства материалов

2.2 Механические свойства материалов

2.3 Специфические свойства

Введение

Чёрная металлургия — основа развития большинства отраслей народного хозяйства. Несмотря на бурный рост продукции химической промышленности, цветной металлургии, промышленности стройматериалов, чёрные металлы остаются главным конструкционным материалом в машиностроении и строительстве.

Современная чёрная металлургия имеет высокий технический потенциал. Значительный прогресс достигнут в технологии производства в отдельных подотраслях и переделах чёрной металлургии. Так, добыча железной руды в основном ведётся прогрессивным открытым способом; в коксовом производстве внедрены бездымная загрузка шихты и сухое тушение кокса; в доменном производстве в печах с повышенным давлением газа под колошником выплавляется 97%, а с вдуванием природного газа — 84% всего чугуна; в сталеплавильном производстве растет выплавка стали в кислородных конвертерах и электропечах, внедрены внепечная обработка стали под вакуумом, синтетическими шлаками, инертными газами, переплавные процессы; увеличивается доля непрерывной разливки стали; в прокатном производстве эффективно применяются термическая обработка металлопродукции, средства неразрушающего автоматического контроля; в трубном — совершенствуется технология производства сварных труб большого диаметра, бесшовных труб; в метизном производстве внедряются автоматизированное поточные линии. Осуществляется разработка промышленных способов прямого получения железа. Ведутся работы по созданию автоматизированной системы управления чёрной металлургии.

Цель данной работы — сравнить по свойствам два продукта черной металлургии: чугун и сталь, столь важные для человечества.

1. Изучить характеристику материалов.

2. Разобрать и сравнить физико-химические, механические и специфические свойства чугуна и стали.

3. Сделать вывод.

При написании данной работы использовалась учебная и методическая литература.

1. Характеристика материалов

1.1 Чугун

Чугун (тюрк.), сплав железа с углеродом (обычно более 2%) содержащий также постоянные примеси (Si, Mn, Р и S). Широко применяемые марки чугунов обычно содержат 2,5-4% углерода, 1-5% кремния, до 2% марганца, а также примеси фосфора и серы. В состав специальных чугунов входят легирующие добавки: ванадий, молибден, никель, титан, хром и др. Температура плавления чугунов зависит от их химического состава и примерно составляет 1200-1250 о С.

Виды: белый, серый, ковкий, высокопрочный, половинчатый чугуны.

Структура чугуна зависит от скорости охлаждения и содержания в нём углерода и легирующих примесей. По структуре чугуны разделяют на белые и серые.

Белый чугун получил своё название от вида излома, который имеет белый или светло-серый цвет. Углерод в нём находится в химически связанном состоянии в виде цементита Fe3 C. Цементит хрупок и обладает высокой твёрдостью, поэтому белый чугун не поддаётся механической обработке, для изготовления изделий применяется редко и сварке не подлежит.

Из белого чугуна путём специальной термической обработки (длительная выдержка при температуре 1000 о С) получают ковкий чугун. По механическим свойствам он пластичнее белого чугуна. Название «ковкий» это условное название, чугуны не используют в виде поковок, они практически не куются.

Высокопрочные чугуны получают добавлением в сплав некоторых легирующих элементов (магния, церия и др.). Серый чугун содержит в своём составе почти весь углерод в виде графита, поэтому излом его имеет серебристо-серый цвет. Серый чугун хорошо обрабатывается режущим инструментом, поэтому он широко применяется как конструкционный материал. Серый чугун дешевле стали, отличается хорошими литейными свойствами, высокой износостойкостью, способностью гасить вибрации, хорошей обрабатываемостью. Отрицательными его свойствами являются пониженная прочность и высокая хрупкость.

Историческая справка. Первые сведения о чугуне относятся к 6 в. до нашей эры. В Китае из высокофосфористых железных руд получали чугун, содержащий до 7% Р, с низкой температурой плавления, из которого отливали различные изделия. Чугун был известен и античным металлургам 4-5 вв. до нашей эры. Производство чугуна в Западной Европе началось в 14 в. с появлением первых доменных печей (штюкофенов) для выплавки чугуна из руд. Полученный чугун использовали или для передела в сталь в кричном горне, или для изготовления различных строительных деталей и оружия (пушки, ядра, колонны и др.). В России производство чугуна началось в 16 в.; в дальнейшем оно непрерывно расширялось, и при Петре I Россия по выпуску чугуна превзошла все страны, но через столетие отстала от западно-европейских стран. Появление во 2-й пол.18 в. вагранок позволило литейным цехам отделиться от доменных, т.е. положило начало независимому существованию чугунолитейного производства (при машиностроительных заводах). В начале 19 в. возникает производство ковкого чугуна. Во 2-й четверти 20 в. начинают применять легирование чугуна, что дало возможность существенно повысить его свойства и получать специальный чугун (износостойкие, коррозионностойкие, жаростойкие и т.д.). К этому же периоду относится также разработка способов модифицирования чугуна. В конце 40-х гг. был получен модифицированный чугун с включениями графита шаровидной формы вместо обычной пластинчатой. В 60-х гг. в электрических печах начали получать из стальных отходов с добавлением карбюризаторов т. н. синтетический чугун с высокими механическими свойствами при пластинчатой форме графита.

Маркировка. Чугун маркируют по буквенно-цифровой системе: первые буквы (С, К и В) обозначают серый, ковкий и высокопрочный чугун соответственно; вторая буква (Ч) обозначает чугун. В сером чугуне две цифры указывают на временное сопротивление. Например, в марке СЧ10 буквы СЧ обозначают серый чугун, 10 — временное сопротивление. В обозначениях ковкого и высокопрочного чугунов после буквенной маркировки (КЧ и ВЧ) первые две цифры также обозначают временное сопротивление, а вторые две — относительное удлинение, например КЧ 35-10 (ковкий чугун с временным сопротивлением не менее 350 МПа и относительным удлинением не менее 10%).

В промышленности разновидности чугуна маркируются следующим образом:

· передельный чугун — П1, П2;

· передельный чугун для отливок — ПЛ1, ПЛ2,передельный фосфористый чугун — ПФ1, ПФ2, ПФ3,передельный высококачественный чугун — ПВК1, ПВК2, ПВК3;

· чугун с пластинчатым графитом — СЧ (цифры после букв «СЧ», обозначают величину временного сопротивления разрыву в кгс/мм);

o антифрикционный серый — АЧС,

o антифрикционный высокопрочный — АЧВ,

o антифрикционный ковкий — АЧК;

· чугун с шаровидным графитом для отливок — ВЧ (цифры после букв «ВЧ» означают временное сопротивление разрыву в кгс/мм и относительное удлиненние (%);

· чугун легированный со специальными свойствами — Ч.

1.2 Сталь

Сталь (польск. stal, от нем. Stahl), деформируемый (ковкий) сплав железа с углеродом (до 2%) и др. элементами. Сталь — важнейший продукт чёрной металлургии, являющийся материальной основой практически всех отраслей промышленности. Масштабы производства стали в значительной степени характеризуют технико-экономический уровень развития государства.

Историческая справка. Сталь как материал, используемый человеком, имеет многовековую историю. Наиболее древний способ получения стали в тестообразном состоянии — сыродутный процесс, в основе которого лежало восстановление железа из руд древесным углём в горнах (позднее в небольших шахтных печах). Для получения литой стали древние мастера применяли тигельную плавку — расплавление мелких кусков стали и чугуна в огнеупорных тиглях. Тигельная сталь характеризовалась весьма высоким качеством, но процесс был дорогим и малопроизводительным. Таким способом изготовляли, в частности, булат и его разновидность — дамасскую сталь. Тигельный процесс просуществовал до начала 20 в. и был полностью вытеснен электроплавкой. В 14 в. возник кричный передел, заключавшийся в рафинировании предварительно полученного чугуна в кричном горне. В конце 18 в. начало применяться пудлингование, при котором, как и при кричном переделе, исходным материалом был чугун, а продуктом — тестообразный металл (крица) качество металла при этом было выше, а сам процесс характеризовался более высокой производительностью. Пудлингование сыграло важную роль в развитии техники, однако обеспечить всё возраставшие потребности общества в стали не могло. Лишь с появлением во 2-й половине 19 в. бессемеровского процесса и мартеновского процесса, а затем и томасовского процесса стало возможным массовое производство литой стали. В конце 19 в. начала применяться выплавка стали в электрических печах. До середины 20 в. главенствующее положение среди способов производства стали занимал мартеновский процесс, на долю которого приходилось около 80% выплавляемой в мире стали. В 50-х гг. был внедрён кислородно-конвертерный процесс, причём в последующие годы его роль резко возросла. Наряду с указанными способами массового производства стали развиваются более дорогие и менее производительные способы, позволяющие получать особо чистый металл высокого качества: вакуумная дуговая плавка, вакуумная индукционная плавка, электрошлаковый переплав, электроннолучевая плавка, плазменная плавка.

Стали делятся на конструкционные и инструментальные. Разновидностью инструментальной является быстрорежущая сталь.

По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода — на малоуглеродистые (до 0,25%), среднеуглеродистые (0,3-0,55%) и высокоуглеродистые (0,6-0,85%); легированные стали по содержанию легирующих элементов делятся на низколегированные, среднелегированные и высоколегированные.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь различается на аустенитную, ферритную, мартенситную, бейнитную или перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

Маркировка сталей. Единой мировой системы маркировки стали не существует. В СССР проведена большая работа по унификации обозначений различных марок стали, что нашло отражение в государственных стандартах и технических условиях. Марки углеродистой стали обыкновенного качества обозначаются буквами Ст и номером (Ст0, Ст1, Ст2 и т.д.). Качественные углеродистые стали маркируются двузначными числами, показывающими среднее содержание стали в сотых долях процента: 05, 08, 10, 25, 40 и т.д. Спокойную сталь иногда дополнительно обозначают буквами сп, полуспокойную — пс, кипящую — кп (например, СтЗсп, Ст5пс, 08кп). Буква Г в марке стали указывает на повышенное содержание Mn (например, 14Г, 18Г). Автоматные стали маркируются буквой А (А12, А30 и т.д.), углеродистые инструментальные стали — буквой У (У8, У10, У12 и т.д. — здесь цифры означают содержание углерода в десятых долях процента).

Обозначение марки легированной стали состоит из букв, указывающих, какие компоненты входят в её состав, и цифр, характеризующих их среднее содержание. В СССР приняты единые условные обозначения химического состава стали: алюминий — Ю, бор — Р, ванадий — Ф, вольфрам — В, кобальт — К, кремний — С, марганец — Г, медь — Д, молибден — М, никель — Н, ниобий — Б, титан — Т, углерод — У, фосфор — П, хром — Х, цирконий — Ц. Первые цифры марки обозначают среднее содержание углерода (в сотых долях процента для конструкционных сталей и в десятых долях процента для инструментальных и нержавеющих сталей); затем буквой указан легирующий элемент и цифрами, следующими за буквой, — его среднее содержание. Например, сталь марки 3Х13 содержит 0,3% углерода и 13% Cr, стали марки 2X17H2 — 0,2% углерода, 17% Cr и 2% Ni. При содержании легирующего элемента менее 1,5% цифры за соответствующей буквой не ставятся: так, сталь марки 12ХН3А содержит менее 1,5% Cr. Буква А в конце обозначения марки указывает на то, что сталь является высококачественной, буква Ш — особо высококачественной. Обозначение марки некоторых легированных сталей включает букву, указывающую на назначение стали (например, ШХ9 — шарикоподшипниковая сталь с 0,9-1,2% Cr; Э3 — электротехническая сталь с 3% Si). Стали, проходящие промышленные испытания, часто маркируют буквами ЭИ или ЭП (завод «Электросталь»), ДИ (завод «Днепроспецсталь») или ЗИ (Златоустовский завод) с соответствующим очередным номером (ЭИ268).

2. Сравнение свойств чугуна и стали

2.1 Физико-химические свойства материалов

Содержание углерода в стали до 2%, в чугуне – более 2%

Чугун относится к материалам, обладающим плохой технологической свариваемостью, в отличие от стали. Основные трудности при сварке обусловлены высокой склонностью его к отбеливанию, т.е. появлению участков с выделениями цементита, а также образованию трещин в шве и околошовной зоне.

Чугун имеет низкую по сравнению со сталью температуру плавления (1200-1250 о С) и быстро переходит из жидкого состояния в твёрдое. Это вызывает образование пор в шве, поскольку интенсивное выделение газов из сварочной ванны продолжается и на стадии кристаллизации.

В стали растворяясь в феррите, фосфор сильно искажает и уплотняет его кристаллическую решетку. При этом увеличиваются пределы прочности и текучести сплава, но уменьшаются его пластичность и вязкость. Фосфор значительно повышает порог хладноломкости стали и увеличивает склонность сплава к ликвации.

Фосфор повышает жидкотекучесть и износостойкость, но ухудшает обрабатываемость чугуна.

Марганец повышает прочность стали и чугуна, не снижая пластичности, и резко уменьшает хрупкость при высоких температурах (красноломкость). Марганец уменьшает вредное влияние кислорода и серы.

Сера является вредной примесью, образует при затвердевании сернистое железо (FeS),ухудшает литейные свойства чугуна и стали (снижает жидкотекучесть, увеличивает усадку и повышает склонность к образованию трещин).

2.2 Механические свойства материалов

Механические свойства чугунов зависят от металлической основы, а также формы и размеров включений графита. Наиболее прочными являются серые чугуны на перлитной основе, а наиболее пластичными — серые чугуны на ферритной основе. Поскольку графит имеет очень малую прочность и не имеет связи с металлической основой чугуна, полости, занятые графитом, можно рассматривать как пустоты, надрезы или трещины в металлической основе чугуна, которые значительно снижают его прочность и пластичность. Наибольшее снижение прочностных свойств вызывают включения графитав виде пластинок, наименьшее — включения точечной или шарообразной формы.

В стали твердые частицы цементита повышают сопротивление деформации, уменьшая пластичность и вязкость. Таким образом, с увеличением в стали содержания углерода возрастают твердость, предел прочности и уменьшаются ударная вязкость, относительное удлинение и сужение.

Чугун обладает хорошими литейными свойствами, хорошо обрабатывается резанием, сопротивляется износу, обладает способностью рассеивать колебания при вибрационных и переменных нагрузках. Свойство гасить вибрации называется демпфирующей способностью. Демпфирующая способность чугуна в 2-4 раза выше, чем стали.

2.3 Специфические свойства

Сталь — это сплав железа с углеродом. Содержание углерода до 2 %.

Сталь — основной материал, широко применяемый в машино- и приборостроении, строительстве, а также для изготовления различных инструментов.

Раскислением называют процесс удаления кислорода из жидкой стали. Не раскисленная сталь обладает недостаточной пластичностью и подвержена хрупкому разрушению при горячей обработке давлением.

Спокойные стали раскисляют марганцем, алюминием и кремнием в печи и ковше. Они затвердевают в изложнице спокойно, без газовыделения, с образованием в верхней части слитков усадочной раковины. Дендритная ликвация в крупных слитках такой стали при их прокатке или ковке приводит к появлению полосчатой структуры.

Для улучшения физических, химических, прочностных и технологических свойств стали легируют, вводя в их состав различные легирующие элементы (хром, марганец, никель и др.). Стали могут содержать один или несколько легирующих элементов, которые придают им специальные свойства.

Легирующие элементы вводят в сталь для повышения ее конструкционной прочности.

Чугун — это железоуглеродистый сплав, с содержанием более 2 % углерода

Высокая демпфирующая способность и износостойкость обусловили применение чугуна для изготовления станин различного оборудования, коленчатых и распределительных валов тракторных и автомобильных двигателей и др.

Повышенная жидкотекучесть чугуна затрудняет удержание расплавленного металла от вытекания и усложняет формирование шва. Вследствие окисления кремния на поверхности сварочной ванны возможно образование тугоплавких оксидов, что может привести к непроварам.

Плохо свариваются также чугунные детали, работающие длительное время в соприкосновении с маслом и керосином. Поверхность чугуна пропитывается маслом и керосином, которые при сварке сгорают и образуют газы, способствующие появлению сплошной пористости в сварном шве.

Графит повышает износостойкость и антифрикционные свойства чугуна вследствие собственного смазочного действия и повышения прочности пленки смазочного материала. Чугуны с графитом, как мягкой и хрупкой составляющей, хорошо обрабатываются резанием (с образованием ломкой стружки) и обеспечивают более чистую поверхность, чем стали (кроме автоматных сталей).

Чугунные детали, работающие длительное время при высоких температурах, почти не поддаются сварке. Это происходит в результате того, что под действием высоких температур (300-400 о С и выше) углерод и кремний окисляются, и чугун становится очень хрупким.

Наиболее прочными являются серые чугуны на перлитной основе, а наиболее пластичными — серые чугуны на ферритной основе.

Механические свойства высокопрочного чугуна позволяют применять его для изготовления деталей машин, работающих в тяжелых условиях, вместо поковок или отливок из стали. Из высокопрочного чугуна изготовляют детали прокатных станов, кузнечно-прессового оборудования, паровых турбин (лопатки направляющего аппарата), тракторов, автомобилей (коленчатые валы, поршни) и др.

чугун сталь свойство металлургия

3. Вывод

В результате проделанной работы были рассмотрены характеристики чугуна и стали, их физико-химические, механические и специфические свойства. При сравнении свойств оказалось, что:

· Физико-химические свойства чугуна и стали различны по:

· Физико-химические свойства чугуна и стали сходны по влиянию марганца и серы.

· Механические свойства чугуна зависят от металлической основы и включению графита, а стали — от включений цементита и повышения содержания углерода.

· Специфические свойства стали:

— содержит углерода до 2%;

— обладает свойствами раскисления;

— для улучшения свойств сталь легируют.

· Специфические свойства чугуна:

— содержание углерода более 2%;

— пропитывается маслом и керосином;

— высокая износостойкость и антифрикционные свойства;

— обладает литейными свойствами.

Хоть сталь и производится из чугуна, они имеют различные физико-химические, механические и специфические свойства.

Использованная литература

1. Виноградов Ю.Г., Орлов К.С. Материаловедение для слесарей-монтажников. М. 1983.

2. Гузова В.В., Синенко Е.Г. и др. «Прикладная механика: учебное пособие.» — 2-е издание, перераб. и доп. — Красноярск: ИПЦ КГТУ, 2002.

3. Лахтин Ю.М., Леонтьева В.П. Материаловедение. М., 1972, 1980.

Свойства чугуна и стали примеры уравнений

Ключевые слова конспекта: производство чугуна, производство стали, железная руда, чугун, сталь, руда, кокс, силикат кальция, пирит, доменная печь.

ПРОИЗВОДСТВО ЧУГУНА. ДОМЕННАЯ ПЕЧЬ

По объёму производства и потребления железо является важнейшим металлом. Обычно железо используется в виде сплавов. Отрасль промышленности, производящая железо и его сплавы, – чёрная металлургия.

Источником получения железа является железная руда. В руде основными компонентами являются соединения железа:

  • Fe3O4 – магнетит (магнитный железняк),
  • Fe2O3 – гематит (красный железняк),
  • Fe2O3nH2O – лимонит (бурый железняк),
  • FeS2 – пирит (железный колчедан, серный колчедан).

Пирит сначала обжигают (в ходе производства серной кислоты), а огарок (Fe2O3) используют в производстве чугуна.

Продуктами производства являются чугун и сталь.

Чугун – сплав железа с углеродом, в котором массовая доля углерода составляет более 2%, а также имеются примеси кремния, фосфора, серы и марганца.

Производство чугуна осуществляют в доменных печах (см. рис). Сырьём для производства являются железная руда, кокс, известняк и горячий воздух.

Доменную печь загружают сначала коксом, а затем послойно агломератом и коксом. (Агломерат – это определённым образом подготовленная руда, спечённая с флюсом, в данном случае – с известняком.) Через специальные отверстия (фурмы) в нижнюю часть домны подаётся горячий воздух, обогащённый кислородом. В нижней части домны кокс сгорает, образуя СO2, который, поднимаясь вверх и проходя сквозь слои накалённого кокса, взаимодействует с ним и образует СО:

Руда последовательно претерпевает превращения:

В руде присутствует также пустая порода, которую образует главным образом кремнезём – SiO2. Это тугоплавкое вещество. Для превращения его в легкоплавкие соединения к руде добавляется флюс. Обычно это известняк. При взаимодействии его с кремнезёмом (SiO2) образуется силикат кальция:

СаСO3 + SiO2 = CaSiO3 + CO2(800 °С)

Образующийся силикат легко отделяется в виде шлака.

При восстановлении руды железо получается в твёрдом состоянии. Постепенно оно опускается в более горячую часть печи – распар – и растворяет в себе углерод. Образуется чугун. Последний плавится и стекает в нижнюю часть домны, а жидкие шлаки собираются на поверхности чугуна, предохраняя его от окисления. Чугун и шлаки периодически выпускают через особые отверстия.

Когда металлическое железо выделяется в жидком состоянии, в нём сравнительно хорошо растворяется углерод. При кристаллизации такого раствора образуется чугун – сплав железа с углеродом. Он обладает высокой хрупкостью из-за большого содержания в нём карбида железа Fe3C (цементита), который образуется в результате побочных реакций:

3Fe + С = Fe3C
3Fe + 2СО = Fe3C + СO2

В чугуне содержатся примеси фосфора, серы. Сера ухудшает текучесть чугуна и вызывает красноломкость стали – хрупкость при нагревании до температуры красного каления. Фосфор вызывает хладноломкость стали – хрупкость при обычной температуре.

ПРОИЗВОДСТВО СТАЛИ

Сталь – сплав железа с углеродом, в котором массовая доля углерода составляет менее 2%.

Сущность получения стали из чугуна заключается в уменьшении содержания углерода в металле и возможно более полном удалении примесей – серы и фосфора, а также в доведении содержания кремния, марганца и других элементов до требуемых пределов.

Существует несколько способов переработки чугуна в сталь : мартеновский, бессемеровский и томасовский. Они различаются методами окисления.

В бессемеровском и томасовском способах окисление осуществляется кислородом воздуха, продуваемого через расплавленный металл. Во всех процессах углерод, содержащийся в металле, окисляется до СО и СO2, удаляемых из реакционной зоны. Кремний Si, марганец Мn, хром Сг и другие металлы, окисляясь, переходят в шлак в виде SiO2, МnО и т. д.

Механизм процесса окисления может быть представлен следующим образом. В первую очередь окисляется часть железа. Часть образующихся оксидов растворяется в металле и взаимодействует с примесями:

С + FeO ⇆ Fe + СО
Si + 2FeO
⇆ 2Fe + SiO2
2
P + 5FeO ⇆ 5Fe + P2O5

Для максимального удаления примесей серы и фосфора необходимо, чтобы в процессе передела чугуна получались основные шлаки; это достигается путём добавления известняка или извести. Сера, содержащаяся в чугуне в виде FeS, реагирует с оксидом кальция СаО:

FeS + СаО = CaS + FeO

Образующийся сульфид кальция переходит в шлак. Образовавшийся P2O5 также взаимодействует с известью, образуя фосфат кальция, переходящий в шлак:

3СаО + P2O5 = Са3O4)2

Бессемеровский и томасовский способы осуществляют в конвертерах. Конвертеры – аппараты грушевидной формы, изготовленные из специальной котельной стали (кожух) и футерованные изнутри огнеупорными материалами.

Конспект урока по химии «Производство чугуна и стали. Доменная печь». Выберите дальнейшее действие:

Привет студент

Получение стали из чугуна

Сравнивая химический состав чугуна и стали, видим, что чугун содержит больше примесей, главным образом углерода, кремния, марганца, серы и фосфора. Отсюда следует, что процессы получения стали из чугуна сводятся к понижению количества входящих в состав чугуна примесей. Ниже приводится химический состав одного из чугунов и параллельно состав полученной из него стали. Уменьшения количества примесей в чугуне достигают посредством окислительных процессов.

Таким образом, если примеси получили доступ в состав чугуна вследствие реакций восстановительного характера, то удаление их следует производить посредством реакций окислительных: например, марганец получил доступ в чугун в результате реакции

Для осуществления подобных окислительных реакций необходимо наличие окислов железа в расплавленном металле и соответствующей температуры.

Из чугуна сталь можно получить в тестообразном и жидком состоянии.

Существуют два способа передела чугуна в сталь в тестообразном состоянии: кричный и пудлинговый; первый является наиболее старым и в настоящее время не применяется.

Кричный процесс.Сущность кричного способа переработки чугуна заключается в том, что чугун расплавляют и перемешивают в горне со шлаками, богатыми окислами железа; под действием кислорода шлаков и дутья углерод, кремний и марганец выгорают.

Вследствие уменьшения примесей температура плавления металлической массы повышается и она густеет. Осевшую на поду горна металлическую массу выворачивают и подвергают вторичному плавлению. В результате на дне горна получается ком из спекшихся зерен железа, называемый крицей. Крицу извлекают из горна и проковывают для придания ей требуемой формы и отжатия застрявшего в порах жидкого железистого шлака.

Пудлинговый процесс. Пудлинговый способ передела чугуна в сталь является наиболее старым после кричного. Сущность зтого способа заключается в том, что чугун расплавляют в отражательных печах, подина которых изготовлена из шлаков, богатых окислами железа. В результате воздействия окислов железа и кислорода, содержащегося в печных газах, углерод и другие примеси выгорают из чугуна.

Важным отличием пудлингового процесса от кричного является то, что в пудлинговом процессе топливо сжигается в отдельной топке, не смешиваясь с металлом, и потому чистота топлива не имеет решающего значения.

Пудлинговый процесс изобретен в конце XVIII в. и был до второй половины XIX в. почти единственным способом переработки чугуна в заводском масштабе. В настоящее время пудлинговый способ вытеснен конвертерным и способом производства литой стали в пламенных регенераторных печах.

Схема устройства пудлинговой печи показана на фиг. 13.

Чугун вместе со шлаками, богатыми окислами железа (12 — 20% SiO2. 50 — 60% FeO, 5 — 20% Fe2O3), загружают в окно 4.

Печь обогревается за счет сгорания топлива, загружаемого на колосниковую решетку 1 через окно 2. Чугун плавится, и содержащиеся в нем примеси вступают в соединение с кислородом железных окислов и топочных газов.

Образующаяся в результате окисления углерода окись углерода улетучивается вместе с продуктами горения и удаляется из печи по дымоходу 5, а продукты окисления железа, кремния, марганца и фосфора (FeO, Si02, MnO и Р205) образуют шлак пудлинговой печи.

Находящийся в ванне 3 чугун для ускорения процесса окисления входящих в него примесей перемешивают.

Так как температура плавления железа близка к 1500°, а температура плавления чугуна 1150—1250° и так как в пудлинговой печи температуру нельзя поднять выше 1300—1400°, то металлическая масса по мере хода процесса пудлингования, становясь более тугоплавкой, начинает густеть и из нее начинают выпадать на подину зерна металла. Готовый продукт находится в тесто- образном состоянии и может быть извлечен из печи в виде кома спекшихся зерен железа, пропитанного шлаками; этот ком носит название крицы. Для удаления шлаков крицу обжимают под прессом или подвергают проковке.

Пудлинговые печи невелики: длина ванны около 2 м, ширина — около 1,5 ж; суточная производительность 5—10

Продолжительность процесса пудлингования 1 1 /2—2 1 /2 часа. Угар металла при пудлинговании, слагающийся из потерь углерода в виде газообразного окисла и компонентов чугуна Si, Мn и Р и отчасти Fe в виде окислов в шлаке, составляет от 6 до 15%. Расход топлива — от 80 до 120% веса готового металла, в печах без регенерации; в печах регенераторных — 50—60%.

и последующего растворения восстановленного марганца в железе, а удаление его из чугуна вызывается реакцией

Полученная путем пудлингования сталь не содержит растворенного кислорода (в виде FeO), примесь которого сильно ухудшает механические качества стали, сообщая ей хрупкость; в этом отношении пудлинговая сталь выгодно отличается от литой стали, получаемой конвертерными и другими способами.

Однако отличительной чертой пудлинговой стали является загрязненность ее неметаллическими включениями из богатых окислами железа шлаков.

Наличие шлаков в стали снижает ее механические качества; чем больше загрязнение шлаком, тем качество металла ниже; однако шлаковые включения в хорошо обжатой пудлинговой стали, вытягиваясь при обжимке криц вдоль волокон металла, не оказывают вредного влияния на его механические качества (особенно вдоль волокон).

Кроме отсутствия растворенного кислорода, в пудлинговой стали отсутствуют и другие недостатки, неизбежные при получении слитков из жидкого металла, — пузыри, трещины и усадочные раковины.

Так как пудлинговую сталь для возможно полного удаления шлаков подвергают вытягиванию в полосы с последующей многократной сваркой, то ее называют сварочной.

Высокие качества сварочной стали заставили искать способов к увеличению производительности пудлинговых печей и механизации работы на них.

На фиг. 14 показана вращающаяся пудлинговя печь, обогреваемая печью 1.

Боровок 3 состоит из двух частей — подвижной, подвешенной (примыкающей к барабану 2) и неподвижной, соединенной с дымовой трубой. Загрузку печи производят со стороны борова, для чего подвижную часть его отводят в сторону. При таком устройстве печи ручное перемешивание металла заменяют механическим — перемешивание здесь производится вращением барабана.

Производительность таких печей достигает 16 т в сутки.

С 1930 г. начали применять новый способ получения сварочного железа, заключающийся в следующем:

1) жидкий чугун, расплавленный в вагранке или взятый непосредственно из доменной печи, продувают в бессемеровском конвертере до мягкого металла;

последний медленно выливают в ванну с жидким шлаком состава: 70—75% FeO; 5—10% Fe2O3; около 2% МnО; 10— 12% SiO2; около 2% Р2O5; около 2% Аl2O3; около 2% (CaO+MgO). Температура металла— 1600°, температура шлака

1300°. Объем металла в 6—8 раз меньше объема шлака;

2) соприкасаясь со шлаком, металл охлаждается; одновременно вследствие присутствия в шлаке окислов железа происходит выгорание оставшихся в металле примесей (например, количество углерода снижается до 0,02%);

3) в результате выгорания примесей и охлаждения происходит «вымораживание» (выпадание) кристаллов почти чистого железа;

4) застывший на дне ванны металл извлекают и обжимают под прессом. Вес криц достигает 2,5 т и более.

Таким образом оказывается разрешенным вопрос получения сварочного железа в тестообразном состоянии

механизированным способом в больших количествах и в виде крупных кусков.

Сталь в жидком состоянии получают методом продувки в конвертерах и путем плавки в пламенных, тигельных и электрических печах.

Производство стали в конвертерах

Увеличение потребности в металле и малая производительность пудлинговых печей заставляли искать способы ускорения процесса получения стали.

В 1856 г. англичанин Бессемер взял патент на получение стали из чугуна посредством продувания воздуха через расплавленный чугун.

Сущность бессемеровского процесса заключается в том, что струя воздуха, которой продувают через расплавленный чугун, окисляет входящие в него примеси. Происходящие при бессемеровании чугуна окислительные реакции сопровождаются выделением столь значительного количества тепла, что чугун не только не охлаждается, но его температура поднимается выше температуры плавления стали, и последняя получается в жидком состоянии. Наибольшее количество тепла выделяется при окислении кремния; поэтому чугун для бессемерования должен содержать достаточное количество кремния (больше 1%).

Бессемеровский конвертер — аппарат для получения стали бессемеровским процессом — представляет собой вращающийся сосуд грушевидной формы (фиг. 15.)

Кожух конвертера сделан из железа толщиной от 10 до 30 мм, а внутренняя полость выложена динасовым кирпичом, содержащим 93—97% Si0.2. Толщина огнеупорной футеровки около 300 мм. Воздух вдувают через отверстия 1, сделанные в днище конвертера; снизу воздушные отверстия входят в коробку. Газообразные продукты процесса удаляют через горловину конвертера 2; через нее же вливают в конвертер чугун и выливают готовый продукт.

Полезная емкость конвертера достигает 50 т. Внутренний диаметр конвертера d подсчитывают по формуле

где Т — полезная емкость конвертера в т.

Высоту рабочего пространства (от днища до центра горловины) берут от 1,75 до 2d. Число отверстий в днище достигает 300; диаметр отверстий 10—20 мм.

Количество воздуха, продуваемого через конвертер, составляет от 300 до 360 м 3 на 1 т залитого в конвертер чугуна; давление дутья в бессемеровских конвертерах составляет обычно 2—2,5 am.

В сутки на конвертере средней емкости можно провести до 40 плавок.

На фиг. 16 показано положение бессемеровского конвертера при наполнении чугуном.

Перед продувкой конвертер приводят в положение, показанное на фиг. 16, и наполняют чугуном при температуре около 1300°. Слой металла не рекомендуют делать глубже 0,5 м.

Воздух начинают продувать, когда конвертер находится в наклонном положении; таким образом, непосредственно после пуска воздух только скользит над чугуном и вдувается лишь для предохранения воздушных каналов от закупоривания жидким чугуном. Затем конвертер приводят в рабочее положение, показанное на фиг. 15, и воздух начинает проходить через всю толщину залитого в конвертер чугуна.

В первый период применения бессемеровского процесса получаемый по этому способу продукт не всегда бывал хорошего качества.

Причиной этого было то обстоятельство, что процесс не основывался на химическом анализе и проводился без достаточно научных оснований.

Спустя некоторое время было замечено, что лучшие результаты получаются при переработке чугунов серых, т. е. содержащих много кремния.

Кроме того, в первый период применения бессемеровского способа опыт показал, что исключительно хороший продукт получается при плавке шведских чугунов, содержащих весьма мало серы и фосфора.

Наконец, было установлено, что на качество продукта в сильной степени и в положительную сторону влияет присадка в конце плавки чугуна, содержащего много марганца.

Таким образом, постепенно накопился опыт, в результате которого обеспечивалась возможность получения путем бессемерования вполне доброкачественного продукта.

Процесс переработки чугуна в бессемеровском конвертере распадается на три периода.

Первый период — период искр.

Искры появляются вследствие механического действия дутья на расплавленный чугун, капли которого увлекаются дутьем, одновременно окисляясь с поверхности. Углерод, вступая в реакцию с кислородом, сгорает, превращаясь в углекислый газ, и при этом взрывает каплю чугуна.

В этот период в конвертере проходят следующие реакции:

1) горение железа по уравнению

и растворение закиси железа в жидком металле;

2) выгорание кремния; кремний сгорает под действием кислорода воздуха, раскисляя железо; продукты окисления кремния не растворяются в металле и уходят в шлак; в этот период протекают следующие реакции:

3) выгорание марганца; марганец сгорает, образуя закись марганца, уходящую в шлак; протекают следующие реакции:

Все указанные выше реакции протекают с выделением тепла, вследствие чего в этот период плавки температура непрерывно повышается. Продолжительность первого периода 3—4 мин.

Второй период — период яркого пламени. В реакцию начинает вступать углерод. Углерод сгорает, образуя окись углерода и углекислый газ. Эти реакции выражаются уравнениями

продолжается также реакция

поэтому возникает взаимодействие углерода с закисью железа по реакции с поглощением тепла

Горение углерода сопровождается вырывающимся из горловины конвертера пламенем.

К концу выгорания углерода температура металла достигает 1600—1650°. Продолжительность второго периода 9— 16 мин.

Третий период. С уменьшением в составе чугуна углерода в результате усилившегося горения железа появляется бурый дым, представляющий собой пары окислов железа. Наличие бурого дыма показывает, что входящие в состав чугуна примеси почти исчезли и что кислород проходящего через конвертер воздуха соединяется с железом. Третий период самый короткий — продолжается около 1 мин. и может возникать лишь при продувке на очень мягкие марки стали.

Об изменении состава чугуна во время хода процесса можно судить на основании анализа проб, взятых из конвертера через определенные промежутки времени, но это сопряжено с повалкой конвертера и производится иногда лишь в исследовательских целях.

В случае нормального хода процесса и при определенном составе перерабатываемого чугуна об окончании процесса можно судить по времени продувки и по внешним признакам, например, по характеру пламени и дыма, выходящих из конвертера.

Характерен цвет шлака. При достаточном обезуглероживании стали (до 0,1% С) шлак бессемеровского процесса имеет бурую поверхность и оливковозеленый излом; желтая поверхность шлака, а в изломе светлозеленая, говорит о том, что металл еще недостаточно обезуглерожен.

О ходе процесса можно также судить наблюдая через спектроскоп характер пламени, вырывающегося из конвертера; по линиям спектра можно определить момент надлежащего обезуглероживания металла. В последнее время для контроля степени обезуглероживания по ходу процесса продувки применяют приборы, основанные на принципе фотоэлемента.

Чем больше нужно оставить в стали углерода, тем раньше прерывается второй период.

Продолжительность хорошо организованного процесса продувки составляет около 10—15-мин.

Сталь после продувки содержит некоторое количество закиси железа. Присутствие закиси железа влияет на механические качества стали отрицательно: сталь делается красноломкой, т. е. плохо обрабатывается в горячем состоянии.

Для удаления из раствора стали закиси железа к продутому металлу добавляют некоторое количество специального чугуна, содержащего значительное количество марганца (ферромарганец), а иногда, кроме этого, специальный сплав, с высоким содержанием кремния (ферросилиций). Эта операция называется раскислением.

Прибавление к расплавленной стали феромарганца вызывает реакцию

Полученная в результате этой реакции слабо растворимая в металле закись марганца переходит в шлак.

Тот же результат дает и прибавление ферросилиция:

Образовавшаяся кремнекислота SiO2 переходит в шлак. Подобный же результат может дать и присадка алюминия:

Образовавшийся глинозем Аl2O3 переходит в шлак.

Чем лучше раскислен металл, тем выше его механические качества.

На фиг. 17 дан пример изменения состава металла во время бессемерования; первоначальный состав чугуна—3,5% С, 1,60%Si, 0,5%Мn и 93,75% Fe, а в конце третьего периода— 0,3% С, 0,1%Si, менее 0,1%Мn, 99,5% Fe.

Расплавленная сталь способна поглощать газы. Наличие растворенных в металле газов СО, N2 и Н2 влияет отрицательно на механические качества металла.

Присадкой алюминия и кремния можно достигнуть получения совершенно беспузыристой стали. Хорошим раскислителем стали является титан, вводимый в сталь в виде сильно углеродистого ферротитана, содержащего около 15% титана. Металл, раскисленный титаном, обладает высокими механическими качествами.

Марганцевая присадка, кроме действия ее в качестве раскислителя, способствует также удалению серы. Происходящая при этом реакция выражается уравнением

Как было указано выше, MnS почти не растворяется в жидком металле и уходит в шлак.

Угар металла в процессе бессемерования достигает 7—12%.

Для получения нужного количества углерода в продукте процесс либо прекращается именно в тот момент, когда это количество получается в ванне вследствие выгорания углерода, либо обезуглероживание чугуна доводят до конца, а затем для получения нужного количества углерода в конвертер вводят соответствующее количество чугуна, и таким образом получают нужное содержание углерода в металле.

Последний способ сложнее, но зато надежнее, так как при быстром ходе процесса бессемерования трудно уловить надлежащий момент прекращения процесса.

В связи с особенностями химического состава перерабатываемого чугуна, температуры его заливки в конвертер и других условий исторически сложились различные типы процесса, известные под названием русского, шведского, английского, американского и немецкого.

Русский способ был впервые применен Д. К. Черновым и К. П. Поленовым. Этот способ дает возможность перерабатывать в сталь бессемеровским процессом малокремнистые чугуны. Сущность способа заключается в том, что недостаток кремния, являющегося горючим в ходе процесса, восполняется высоким перегревом чугуна перед заливкой его в конвертер.

Д. К. Чернов перегревал чугуны в вагранке, К. П. Поленов — в отражательной печи.

При бессемеровании фосфор не удаляется из чугуна, так как при наличии в бессемеровском шлаке свободного кремнезема SiO, пятиокись фосфора Р2O5 не удержится в шлаке, так как фосфор, восстанавливаемый углеродом, кремнием, марганцем или железом, перейдет снова в металл.

Малое бессемерование. Особую разновидность конвертерного способа производства стали составляет так называемое малое бессемерование. Отличительной особенностью этого процесса является способ подвода дутья—не снизу, как в бессемеровских и томасовских конвертерах, а сбоку, на уровне поверхности раздела металл—шлак. При таком способе подвода дутья в полости конвертера над металлом имеется неиспользованный кислород, вследствие чего выделяющаяся из ванны СО сжигается в конвертере в С02 с выделением большого количества тепла. Поэтому при боковом дутье получается металл со значительно более высокой температурой, чем в конвертерах с нижним дутьем. Такой горячий металл особенно пригоден для производства стального фасонного литья; поэтому конвертеры с боковым дутьем получили применение главным образом в сталелитейных цехах машиностроительных заводов. По условиям производства в литейных цехах такие конвертеры строят обычно для переработки малых садок металла — от 0,5 до 3 т, откуда и название «малое бессемерование».

Томасирование. В 1878 г. англичанин Томас предложил для удаления фосфора делать в конвертере основную футеровку и вводить в конвертер перед заливкой чугуна известь. Измененный таким образом бессемеровский процесс получил распространение под именем томасовского.

Томасовский процесс в основных чертах подобен бессемеровскому. Конвертеры, работающие по способу Томаса, имеют больший объем, чем бессемеровские. Увеличение размера здесь вызывается необходимостью загрузки в конвертер извести; полезная вместимость томасовского конвертера достигает 60 т. Глубина ванны металла достигает 0,60 м. Внутренний диаметр определяется по формуле

где Т — вес садки в т; высота рабочего пространства составляет от 2 до- 2,25d; давление дутья — от 2 до 2,5 ат; количество дутья составляет от 300 до 400 м3 на 1 т заливаемого в конвертер чугуна.

Футеровка конвертера делается из обожженного доломита с добавкой безводной каменноугольной смолы.

При томасировании после выгорания из чугуна кремния, марганца и углерода удаление фосфора в шлак происходит в результате реакции окисления с образованием прочной фосфорно-известковой соли по уравнению

Хотя фосфор и окисляется в P2O5 с самого начала продувки, однако не может удержаться в шлаке, так как известь находится еще в твердом неактивном состоянии, и из остающейся в свободном состоянии Р2O5 фосфор восстанавливается углеродом по реакции P2O5 + 5С = 2Р+ 5СО. Вводимая при томасировании в конвертер известь служит, таким образом, флюсом, связывающим Р2O5 в прочное соединение (СаО)4 P2O5 , уходящее в шлак.

Количество фосфора может быть доведено до 0,04—0,05%.

Томасовским способом перерабатывают чугуны, получаемые из руд, богатых фосфором, например, керченских.

Нормальный томасовский чугун содержит около 3,5% С: 0,5% Si; 0,8—l,3%Mn; 1,6—2,0% Р и не более 0,08% S.

Томасовские чугуны вследствие наличия в них значительного количества фосфора отличаются жидкоплавкостью.

Более низкая температура плавления томасовского чугуна по сравнению с бессемеровским (около 1100° С) позволяет начинать его продувку при более низкой температуре — порядка 1200° С.

Перед началом процесса в конвертер вводят из бункера свежеобожженную известь, затем вливают чугун и пускают дутье.

Первый период (выгорание кремния и марганца) в томасовском процессе сходен с бессемеровским, но вследствие значительно меньшего содержания в томасовском чугуне кремния он короче.

Второй период (выгорание углерода) вследствие более низкой температуры процесса сопровождается менее ярким пламенем, чем при бессемеровании.

Окисление и ошлакование фосфора в третьем периоде поднимает температуру металла до степени, необходимой для разливки низкоуглеродистой стали— порядка 1600° С.

О готовности металла судят по появлению бурых паров окиси железа, вызываемых сильным горением железа.

Вследствие сильного влияния фосфора на структуру металла о содержании фосфора можно судить по характеру излома пробы: при низком содержании фосфора излом серый, волокнистый; при наличии значительного количества фосфора металл в изломе будет блестящим и крупнозернистым.

Перед введением в металл раскислителей сливают шлак. Если шлак не будет удален перед добавлением раскислителей, входящие в состав раскислителей углерод, кремний и марганец могут восстановить из шлака фосфор, и последний снова перейдет в металл. Даже небольшие количества шлака, оставшиеся после его сливания, взаимодействуя с раскислителями, заметно увеличивают содержание фосфора в металле.

Томасовские шлаки содержат около 22% Р205 и применяются в качестве удобрения. Процесс продувки при томасировании продолжается около 20 мин. Угар металла составляет 12—14%.

Применение кислородного дутья при конвертерном способе. Конвертерный способ дает сталь, содержащую значительное количество растворенных газов; наличие в конвертерной стали азота и водорода (до 0,03%) повышает

жесткость ее и уменьшает динамическую прочность.

Для получения стали кислым конвертерным способом необходимо иметь руды, которые давали бы чугун с содержанием фосфора не больше 0,05%. Наоборот, при основном способе, где горение фосфора является главным источником тепла, его содержание в чугуне не должно быть ниже 1,6%.

Поэтому, несмотря на то, что конвертерный способ требует по сравнению с мартеновским меньших капитальных затрат (приблизительно в 2,5 раза) и идет с меньшими затратами топлива (на весь цикл от руды до готовой стали), его применение сравнительно ограниченно.

Для расширения применения конвертерного способа необходимо: 1) найти способ переработки чугунов, содержащих фосфор в количествах, больших, чем допускается при кислом процессе, и меньших, чем требуется при основном;

2) понизить содержание газов в конвертерной стали.

Это, как показывает опыт, достигается обогащением подаваемого в конвертеры воздуха кислородом. Применение кислородного дутья, уменьшая общее содержание в газах азота и водорода, снижает содержание этих газов в конвертерной стали и, таким образом, повышает ее механические качества. Вследствие того что при кислородном дутье уменьшается общее количество газов, уменьшаются и потери тепла, уносимого газами (при обычном дутье эти потери достигают 25%). Это дает возможность перерабатывать томасовским способом чугун с содержанием фосфора, меньшим 1,6%. Однако при низких концентрациях P2O5 шлак утрачивает свою кондиционность.

Применение дутья, обогащенного кислородом, сокращая время продувки, повышает производительность конвертеров.

Мартеновский процесс. С расширением области применения стали начали накапливаться запасы стального лома, и все настойчивее становился вопрос о способе его переплавки.

Конвертеры для этой цели неприменимы вследствие того, что они приспособлены для переработки лишь жидкого чугуна, а пудлинговые печи оказывались непригодными вследствие слишком низкой рабочей температуры. Задача была разрешена в 1865 г. французами Пьером и Эмилем Мартен, которые воспользовались этой цели регенераторной печью Сименса, применяемой в стекольном производстве.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ


источники:

http://uchitel.pro/%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%BE-%D1%87%D1%83%D0%B3%D1%83%D0%BD%D0%B0-%D0%B8-%D1%81%D1%82%D0%B0%D0%BB%D0%B8-%D0%B4%D0%BE%D0%BC%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F/

http://privetstudent.com/referaty/proizvodstvo/11-poluchenie-stali-iz-chuguna.html

Название: Сравнительная характеристика чугуна и стали
Раздел: Промышленность, производство
Тип: реферат Добавлен 21:32:28 16 февраля 2011 Похожие работы
Просмотров: 8522 Комментариев: 21 Оценило: 6 человек Средний балл: 4.3 Оценка: 4 Скачать