Свойства функций при решении уравнений неравенств

Использование свойств функций при решении уравнений и неравенств

Презентация к уроку

Загрузить презентацию (352 кБ)

Правильному применению методов можно научиться только применяя их на разнообразных примерах.
И.Г. Цейтен

Цели урока:

  • дидактические: продолжить формирование умений применять различные способы решения неравенств; совершенствовать навыки решения неравенств различными методами;
  • развивающие: развивать познавательный интерес у учащихся, логическое мышление, интеллектуальные способности; формировать математическую речь;
  • воспитательные: воспитывать у учащихся такие качества личности как познавательная активность, самостоятельность, упорство в достижении цели, потребность в приобретении и углублении знаний, вырабатывать умение слушать и вести диалог, формировать эстетические навыки при оформлении записей в тетради.

Тип урока: урок систематизации и обобщения изученного материала

Структура урока:

  1. Организационный этап.
  2. Этап подготовки учащихся к активному и сознательному усвоению материала.
  3. Этап обобщения и систематизации изученного.
  4. Этап подведения итогов.
  5. Этап информации учащихся о домашнем задании.

Оборудование: компьютер, мультимедийный проектор, экран, презентация “Использование свойств функций при решении уравнений и неравенств”, доска, мел, раздаточный материал для работы на уроке и домашним заданием.

Деятельность учителяДеятельность учащихся
Организационный этап.
Здравствуйте, рада вас всех видеть!Ответы учащихся: Здравствуйте!
Этап подготовки учащихся к активному и сознательному усвоению материала.
Эпиграфом к уроку я выбрала слова датского математика и историка математики, жившего с 1839 по 1920 года, Иеромонима Георга Цейтена: “Правильному применению методов можно научиться только применяя их на разнообразных примерах”.

При решении практически любой математической задачи приходится производить преобразование числовых, алгебраических или функциональных выражений. Но бывают случаи, когда стандартные преобразования не позволяют получить ответ. Тогда используют нестандартные методы, суть которых – реализовать “иной взгляд” на задачу, что существенно упрощает решение некоторых задач. Таким образом, тема сегодняшнего урока…

Но для начала — вопросы, ответы на которые вы должны были повторить дома.

“Использование свойств функций при решении уравнений и неравенств”.Слайд 3

Что называется функцией?Пусть каждому числу x из множества чисел X в силу некоторого закона f поставлено в соответствие единственное число y. Тогда говорят, что задана функция , определенная на множестве X; при этом x называют независимой переменной или аргументом, а переменную y – зависимой переменной.Какие свойства функций вам известны?Область определения функции.

Область значений (область изменения).Ограниченность функции.

Возрастание, убывание функции.

Четность, нечетность функции.

Периодичность функции.Что называется областью определения функции?Из определения функции следует, что функция задается вместе с областью определения X. Чаще всего функцию задают с помощью какой-либо формулы. При этом, если не дано дополнительных ограничений, то областью определения функции, заданной формулой, считают множество всех значений переменной, при которых эта формула имеет смысл.Что называется областью значения функции?Область значений (область изменения) – множество всех значений функции .

Функцию называют ограниченной снизу (сверху), если существует такое число M, что для любого x из области определения верно неравенство , (). Функция называется ограниченной, если она ограничена и сверху и снизу.Что понимается под монотонностью функции?

Все определения можно ещё раз увидеть в Приложении 1, которое лежит у вас на партах.Функция возрастает (убывает), если большему значению аргумента соответствует большее (меньшее) значение функции. Общее название этих двух понятий – монотонность.3. Этап обобщения и систематизации изученного.Судя по тем вопросам, которые я задала вам в начале урока, как вы думаете, какие свойства легли в основу методов, которые мы с вами сегодня будем разбирать? Слайд 3Область определения, ограниченность функции, её монотонность.Для более удобного рассмотрения нестандартных методов я составила для вас таблицу. Она у каждого из вас. С её помощью на сегодняшнем уроке мы разберём три метода. Учитель разбирает методы по таблице: пояснения теоретической части, разбор 1-2 примеров (какого — по желанию учащихся). Приложение 2.

Слайды 4 – 7.Ученики слушают объяснения учителя, делая пометки в таблице.А сейчас вы будете работать в группах. Каждая группа выберет себе задание. Затем представитель от группы представит решение.

1 группа. Решить уравнение .

2 группа. Решить неравенство .

3 группа. Решить неравенство .Учащиеся работают в группах.Защита решений. Слайд 8От каждой группы выступает 1 человек с защитой своего решения (решение на доске кратко записать, пояснения по ходу решения).

1группа. .

Решение: при решении используем ограниченность функций и квадратичной функций:

1. для любого х из R.

2. .

Таким образом мы видим, что области значений левой и правой части этого уравнения не имеют “точек соприкосновения”. Значит уравнение не имеет решений.

Ответ: решений нет.

2 группа. .

Решение: при решении используем анализ ОДЗ неравенства.

ОДЗ: .

х=1 не является решением. Тогда при получим, что , а . Значит решением данного неравенства являются все числа из промежутка.

Ответ:

3 группа. .

Решение: при решении используем монотонность функций, входящих в неравенство.

Рассмотрим функции . Все они непрерывны и строго возрастают на R. значит и сумма этих функций тоже будет возрастающей функцией. Легко увидеть, что . А в силу её непрерывности и строгой монотонности получим, что при имеем, а при имеем. Значит решениями являются все .

Ответ: 4.Этап подведения итогов.Ребята, подведём итоги сегодняшнего занятия. Слайд 9.

  1. Какие неравенства мы сегодня рассматривали?
  2. Какими алгоритмами мы пользовались?
  3. Какие затруднения у вас вызвали эти методы? В чём они выражались?
  4. А чем понравились эти методы? Как вы думаете в чём их плюсы, а в чём — минусы?
Учащиеся отвечают, используя записи; рассказывают о своих затруднениях, если они были; высказывают личное мнение о методе.5. Этап информации учащихся о домашнем задании.На следующем занятии мы продолжим решать уравнения и неравенства, с использованием уже других свойств функций. А по теме сегодняшнего урока вам необходимо к следующему уроку выполнить следующее задание (карточки): Слайд 10

2. Творческое задание.

Подумайте, какие “внешние” признаки могут содержать уравнения или неравенства, которые бы указывали на применение рассмотренных сегодня методов.

Всем спасибо! Слайд 11

Литература.

  1. П. В. Чулков Материалы курса “Уравнения и неравенства в школьном курсе математики” – М.:”Педагогический университет “Первое сентября”, 2010.
  2. Олехник С.Н., Потапов М.К., Пасиченко П.И. Уравнения и неравенства. Нестандартные методы решения. Учимся решать задачи. 10-11 классы: Учебно-методическое пособие. – М.: Дрофа. 2002 г.
  3. Математика. Тренировочные тематические задания повышенной сложности с ответами для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов / сост. Г.И. Ковалева, Т.И. Бузулина, О.Л. Безрукова, Ю.А. Розка – Волгоград: Учитель, 2005.
  4. Математика. Подготовка к ЕГЭ. Нестандартные методы решения уравнений и неравенств: учебно-методическое пособие/ Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова. – Ростов – на – Дону: Легион, 2013.
  5. В. К. Егерев, В. В. Зайцев, Б. А. Кордемский и др.; под ред. М. И. Сканави. Сборник задач по математике (с решениями) – М.: ООО”Издательский дом “ОНИКС 21 век”: ООО “Издательство “Мир и Образование”, 2005.

Замечание. По данной теме проводится ещё два урока: 2 урок – использование четности, периодичности, решение задач, 3 урок – самостоятельная работа.

По математике на тему «Функциональный метод решения уравнений и неравенств»(10 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Функциональный метод решения уравнений и неравенств

Использование понятия области определения функции 2

Использование понятия области значений функции 3

Использование свойства монотонности функции 6

Использование свойств четности или нечетности функций 8

Использование свойства периодичности функции 9

Метод функциональной подстановки 10

Функциональный метод решения уравнений и неравенств.

Одним из методов решения уравнений и неравенств является функциональный, основанный на использова­нии свойств функций. В отличие от графического метода, знание свойств функций позволяет находить точные корни уравнения (неравенства), при этом не требуется построения графиков функ­ций. Использование свойств функций способствует рационализа­ции решений уравнений и неравенств.

Рассмотрим использование некоторых свойств функций при решении уравнений и неравенств.

Использование понятия области определения функции

Областью определения функции у = f ( x ) называется множест­во значений переменной х, при которых функция имеет смысл.

Пусть дано уравнение f ( x ) = g ( x ), где f ( x ) и g ( x ) — элементарные функции, определенные на множествах D 1, D 2. Тогда областью D допустимых значений уравнения будет множество, состоящее из тех значений х, которые принадлежат обоим множествам, то есть D = D 1 D 2. Ясно, что когда множество D пустое ( D = Ø), то урав­нение решений не имеет.

Пусть требуется решить неравенство f ( x ) > 0. D ( f ) — область определения функции f ( x ). Если удается доказать, что для всех х из области определения выполняется неравенство f ( x ) > 0, то D ( f ) представляет собой решение данного неравенства.

1) Решите уравнение: + =5

ОДЗ: 1- x 0, x 1, решений нет.

x -3 0 x 3

2) Решите уравнение: arcsin ( x +2) + = x — 2

ОДЗ: -1 x +21, -3 x -1, -3 x -1, решений нет

2 x — x 0 x (2- x ) 0 0 x 2

3) Решите уравнение: + = x — 1

Решение.

ОДЗ: x -1 0, x =1

1- x 0

ОДЗ состоит из одной точки x =1. Остается проверить, является ли x =1 корнем уравнения.

x =1 + =1-1, 0=0. Верно.

4) Решите уравнение: arccos (6 x — x -10)=

ОДЗ: 6 x — x -10 -1, x =3, x =3

6 x — x -101 3-2 x 3+2

ОДЗ состоит из одной точки x =3. Остается проверить, является ли x =3 корнем уравнения. x =3 arccos (6*3-3-10)= , arcos (-1)= , = . Верно .

5) Решите неравенство: + 1

1.Область определения левой части: 1.

2.Для любого x из области определения выполняется неравенство + 1

Ответ: x (- ;-1][1;+ ).

Использование понятия области значений функции

Областью значений функции у = f ( x ) называется множество зна­чений переменной у, при допустимых значениях переменной х.

Функция у = f ( x ) называется ограниченной на данном про­межутке (содержащемся в области ее определения), если су­ществует такое число N > 0, что при всех значениях аргумента, принадлежащих данному промежутку, имеет место неравенство N .

Пусть дано уравнение f ( x ) = g ( x ), где f ( x ) и g ( x ) — элементарные функции, определенные на множествах D 1 , D 2. Обозначим область значений этих функций соответственно Е1 и Е2. Если х1 является решением уравнения, то будет выполняться числовое равенство f ( x 1) = g ( x 1), где f ( x 1) — значение функции f ( x ) при х = х1, a g ( x 1) — значение функции g ( x ) при х = х1. Значит, если уравнение имеет решение, то области значений функций f ( x ) и g ( x ) имеют общие элементы 1 ∩ Е2 Ø). Если же таких общих элементов множества Е1 и Е2 не содержат, то уравнение решений не имеет.

1) Решите уравнение: cos 2 x = x -8 x +17

cos2 x = (x-4)+1

ОДЗ :

-1 cos2 x 1; (x-4)+11

Равенство достигается, если cos 2 x =1, x =4

(x-4)+1 = 1

2) Решите уравнение: + =2

ОДЗ: x 0 , x 0

x +9 0

0, 3 + 3, решений нет.

3) Решите уравнение:

ОДЗ:

0 для допустимых значений x

03

3 для допустимых значений x

Равенство достигается, если =3

=3

Решим первое уравнение системы:

=

При x =0 второе уравнение обращается в верное равенство, следовательно, решением системы и уравнения является x =0.

4) Решите уравнение:

ОДЗ:

Равенство достигается, если

Из второго уравнения системы имеем х = 3. Подстановкой во второе уравнение системы убеждаемся, что х = 3 является решением системы.

3 — корень уравнения.

5) Решите уравнение:

ОДЗ:

, .

Равенство достигается, если

Если , то

6) Решите уравнение:

Поскольку , то или .

, или

Решением первой системы является , . Вторая система решений не имеет.

Ответ: , .

7) Решите неравенство: .

На ОДЗ правая часть неравенства неположительна, а левая — положительная.

8) Решите неравенство: >2

ОДЗ: ,.

При любом из области определения >0, следовательно, .

Так как , то >2 на всей области определения.

Ответ: .

9) Решите неравенство:

ОДЗ:

Так как при любом x справедливы неравенства и , то данное неравенство выполняется тогда и только тогда, когда

, т.е. при x =0.

10) Решите уравнение:

Сумма коэффициентов перед тригонометрическими функциями в левой части равна 6, что меньше 7. Это наталкивает на мысль о решении уравнения методом оценки. Действительно, , , . Следовательно, левая часть не превосходит 6 при любом x , поэтому уравнение не имеет действительных решений.

Использование свойства монотонности функции.

Функция f ( x ) называется возрастающей (убывающей) на дан­ном числовом промежутке X , если большему значению аргумента х X соответствует большее (меньшее) значение функции f ( x ), то есть для любых х1 и х2 из промежутка X таких, что х2 > х1 выпол­нено неравенство f ( x 2) > f ( x 1) ( f ( x 2) f ( x 1)).

Функция, только возрастающая или только убывающая на дан­ном числовом промежутке, называется монотонной на этом про­межутке.

Рассмотрим несколько свойств монотонных функций, исполь­зуемых для установления характера монотонности функций и ле­жащих в основе утверждений об уравнениях и неравенствах.

Теорема 1. Монотонная на промежутке X функция каждое свое значение принимает лишь при одном значении аргумента из этого промежутка.

Теорема 2. Если функция f ( x ) возрастает (убывает) на проме­жутке X и функция g ( x ) возрастает (убывает) на промежутке X , то функция h (х) = f ( x ) + g ( x ) + С также возрастает (убывает) на проме­жутке X — произвольная постоянная).

Теорема 3. Если функция f ( x ) неотрицательна и возрастает (убы­ вает) на промежутке X , функция g ( x ) неотрицательна и возрастает (убывает) на промежутке X , С > 0, то функция h (х) = Сf ( x )g ( x ) также возрастает (убывает) на промежутке X .

Теорема 4. Если функция f ( x ) возрастает (убывает) на промежутке X , то функция – f ( x ) убывает (возрастает) на этом промежутке.

Теорема 5. Если функция f ( x ) монотонна на промежутке X и со­храняет на этом множестве знак, то функция на промежутке X имеет противоположный характер монотонности.

Теорема 6. Если обе функции f ( x ) и g ( x ) возрастающие или обе убывающие, то функция h (х) = f ( g ( x )) — возрастающая функция. Если одна из функций возрастающая, а другая убывающая, то h (х) = f ( g ( x )) — убывающая функция.

Теоремы об уравнениях и неравенствах.

Теорема 7. Если функция f ( x ) монотонна на промежутке X , то уравнение f ( x ) = С имеет на промежутке X не более одного корня.

Аналогичное свойство имеет место и для нестрогих нера­венств.

Теорема 10. Если функция f ( x ) возрастает на промежутке X , а g ( x ) убывает на промежутке X , то уравнение f ( x ) = g ( x ) имеет на промежутке X не более одного корня.

Теорема 11. Если функция f ( x ) возрастает на промежутке X , то урав­нение f ( f ( x )) = х равносильно на промежутке X уравнению f ( x ) = х

1) Решите уравнение:

ОДЗ:

Функция х 2 + убывает на промежутке (- ;-0], а — постоянная функция.

Подбором находим, что x =- — 4. В силу теоремы 7, найденный корень единственный.

2) Решите уравнение:

— функция убывает на ;

— функция возрастает.

Подбором находим, что .

В силу теоремы 10 утверждаем, что единственный корень уравнения.

3) Решите уравнение:

Функция возрастает на ; функция убывает на этом отрезке.

Подбором находим, что

В силу теоремы 10 утверждаем, что единственный корень уравнения.

4) Решите уравнение: x 3 + 33 = — 2х

ОДЗ уравнения: х є R .

Функция у(х) = x 3 + 33 — возрастает на R ,

Функция g (х) = — 2х — убывает на R .

Значит уравнение имеет не более одного корня.

5) Решите уравнение: x 5 + x 3 + х = — 42

Функция у(х) = x 5 + x 3 + х — возрастает на R ,

Функция g (х) = — 42 постоянна на R .

Значит уравнение имеет не более одного корня.

6) Решите уравнение: = 8 -2х

ОДЗ: х — 1.

Левая часть уравнения задает возрастающая, а правая убывающая функции.

Значит, это уравнение имеет не более одного корня.

7) Решите систему уравнений

Рассмотрим функцию Z = f ( t ) = 2 t — sin t , тогда систему можно записать в виде

Так как f = 2 — sin t , то функция f -возрастающая, и

поэтому каждое своё значение принимает только при одном значении

Следовательно уравнение равносильно уравнению x = y , а данная система равносильна системе

Полученная система имеет единственное решение x = y =3.

Использование свойств четности или нечетности функций

Функция f ( x ) называется четной, если для любого значения х, взятого из области определения функции, значение —х также при­надлежит области определения и выполняется равенство f (- x ) = f ( x ).

Функция f ( x ) называется нечетной, если для любого значения х, взятого из области определения функции, значение —х также принад­лежит области определения и выполняется равенство f (- x ) = — f ( x ).

Из определений следует, что области определения четной и нечетной функций симметричны относительно нуля (необходимое условие).

Для любых двух симметричных значений аргумента из области определения четная функция принимает равные числовые значе­ния, а нечетная — равные по абсолютной величине, но противопо­ложного знака.

Теорема 1. Сумма, разность, произведение и частное двух чет­ных функций являются четными функциями.

Теорема 2. Произведение и частное двух нечетных функций представляют собой четные функции.

Пусть имеем уравнение или неравенство F (х) = 0, F (х) > 0, ( F (х) F (х) — четная или нечетная функция.

а) Чтобы решить уравнение F (х) = 0, где F (х) — четная или не­четная функция, достаточно найти положительные (или отрица­тельные) корни, после чего записываются отрицательные (или по­ложительные) корни, симметричные полученным, и для нечетной функции корнем будет х = 0, если это значение входит в область определения F (х). Для четной функции значение х = 0 проверяет­ся непосредственной подстановкой в уравнение.

б) Чтобы решить неравенство F (х) > 0 ( F (х) F (х) — чет­ная функция, достаточно найти его решения для х 0 (или х 0). Действительно, если решением данного неравенства является про­межуток (х1; х2), где х1, х2 — числа одного знака или одно из них равно нулю, то его решением будет и промежуток (-х2; -х1).

в) Чтобы решить неравенство F (х) > 0 ( F (х) F (х) — не­четная функция, достаточно найти решения для х > 0 (или х F (х) для х > 0 (или х 0).

1) Может ли при каком-нибудь значении a уравнение иметь 2 x -3 ax +4 x ax =5 пять корней?

Число 0 не является корнем данного уравнения. Так как левая часть уравнения – четная функция, то вместе с каждым ненулевым корнем уравнение имеет противоположный корень, и следовательно, число его корней при любом a четно. Поэтому пяти корней оно иметь не может.

2) Решите уравнение: x +5-24=0

ОДЗ: xR

Функция f ( x )= x +5-24 – четная, x =0 – не является корнем уравнения, поэтому достаточно найти решения для x >0

x >0 , x >0 , x =3

x +5-24=0 x =3

Тогда x = -3 так же является корнем уравнения.

Использование свойства периодичности функции

Функция у = f ( x ) называется периодической, если существует такое число Т 0, что для любого значения х, взятого из области определения, значения х + Т, х — Т, также принадлежат области определения и выполняется равенство f ( x ) = f ( x + Т) = f ( x ) = f ( xТ). Число Т называется периодом функции. Всякая периодическая функция имеет бесконечное количество периодов. При решении уравнений и неравенств будем использовать наименьший положи­тельный период функции.

Если функция F (х) — периодическая, то решение уравнения F ) = 0 или неравенства F (х) > 0 ( F (х)

1) Решите неравенство:

Рассмотрим функцию f (х) = cos 12х — cos 4х.

. Следовательно, решение неравенства достаточно найти на промежутке равном по длине периоду функции. За такой промежуток возьмем . Так как функция чётная, решение найдём на промежутке [0;]. Функция на данном промежутке имеет два корня: 0; — которые разбивают промежуток [0;] на два интервала знакопостоянства: (0; ); ( ; ). Неравенство выполняется для всех

х є ( ; ). Но тогда оно будет выполняться и для всех ( ; ).

Учитывая периодичность: +

Ответ: +

Метод функциональной подстановки

Частным случаем функционального метода является метод функциональной подстановки – самый, пожалуй, распространенный метод решения сложных задач математики. Суть метода состоит в введении новой переменной y =ƒ(x), применение которой приводит к более простому выражению. Отдельным случаем функциональной подстановки является тригонометрическая подстановка.

1) Решите уравнение: tgx + ctgx + tg ² x + ctg ² x + tg ³ x + ctg ³ x = 6

Данное уравнение рационально решать методом функциональной подстановки.

Пусть y = tgx + ctgx, тогда tg²x + ctg²x = y² – 2, tg³x + ctg³x = y³ – 3y

y³ — 8 + y² — 2y =0, (у – 2)(у 2 + 2у +4) + у(у – 2) = 0, (у – 2)(у 2 + 2у +4 + у) = 0, (у – 2)(у 2 + 3у +4) = 0,

Так как tgx + ctgx = 2, то tgx + = 2. Отсюда следует, что tgx = 1 и x = + π n , .

Ответ: + π n , .

Свойства функций при решении уравнений неравенств

«Правильному применению методов можно научиться,

только применяя их на разнообразных примерах».

Решение неравенств повышенной сложности, содержащих модули, иррациональные, логарифмические, показательные функцииили их комбинацию, стандартными школьными методами часто оказывается весьма сложным и громоздким, что вызывает у нас, школьников, определенные трудности.

Одним из эффективных и доступных методов решения таких неравенств и их систем являются методы, опирающиеся на такие свойства функций, как область определения и область значений, неотрицательность, монотонность и ограниченность, экстремумы функций и метод «мини-максов». Суть данных методов заключается на замене иррациональных и трансцендентных неравенств на равносильные им рациональные алгебраические неравенства, решение которых легко осуществляется. Применение этих методов позволяет во многих случаях значительно уменьшить трудоемкость задачи, избежать длинных выкладок и ненужных ошибок.

Мною было проведено анкетирование среди учащихся 9-11 классов:

Знаете ли вы методы решения неравенств, опирающиеся на свойства функций?

Какие вы используете чаще всего?

По результатам анкетирования были получены следующие результаты:

Проанализировав полученные результаты, я пришел к выводу, что большинство учащихся недостаточно осведомлены о данных методах решения неравенств.

Таким образом, возникает необходимость в изучении методов решения неравенств, опирающихся на свойства функций, что определяет актуальность данной работы.

Цель: научиться использовать методы решения неравенств, опирающиеся на свойства функций.

Рассмотреть методы решения неравенств, опирающиеся на свойства функций, такие как область определения, ограниченность, неотрицательность, монотонность функций и метод мини-максов;

Привести примеры решения неравенств с помощью методов, опирающихся на свойства функций;

Составить тренажер по использованию свойств функций при решении неравенств.

Объект исследования: методы решения неравенств.

Предмет исследования: методы решения неравенств, опирающиеся на свойства функций.

Гипотеза исследования: использование свойств функций при решении неравенств дает более рациональное его решение и позволяет повысить эффективность и качество.

Методы исследования: анализ, сравнение, обобщение, конструирование, моделирование, изучение литературных источников и Интернет-источников.

Практическая значимость исследования: изучение методов решения неравенств, опирающихся на свойства функций, необходимы для получения хорошего результата на ЕГЭ, при поступлении в ВУЗы и различных жизненных ситуациях.

Глава 1. Понятие функции

Понятие «функция» является одним из основных понятий в математике. Термин «функция» (в некотором более узком смысле) был впервые использован Лейбницем (1692 год). В свою очередь, Иоганн Бернулли в письме к тому же Лейбницу употребил этот термин в смысле, более близком к современному.

Первоначально понятие функции было неотличимо от понятия аналитического представления. Впоследствии появилось определение функции, данное Эйлером (1751 год), затем — у Лакруа (1806 год), — уже практически в современном виде. Наконец, общее определение функции (в современной форме, но для числовых функций) было дано Лобачевским (1834 год) и Дирихле (1837 год).

К концу XIX века понятие функции переросло рамки числовых систем. Сначала понятие функции было распространено на векторные функции, вскоре Фреге ввёл логические функции (1879), а после появления теории множеств Дедекинд (1887) и Пеано (1911) сформулировали современное универсальное определение.

Зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единственное значение переменной у, называется функцией (определение, которое нам знакомо из курса алгебры).

При этом x называют независимой переменной или аргументом, а переменную y – зависимой переменной или функцией.

Если зависимость переменной у от переменной х является функцией, то коротко это записывают y = f ( x ).

Область определения функции — все значения независимой переменной.

Область значений функции – все значения, которые принимает зависимая переменная.

Глава 2. Использование свойств функции

2.1. Использование области определения функций

Предварительный анализ области определения функций, входящих в неравенство (ОДЗ неизвестной), иногда позволяет получить решение без преобразований.

Если множество M, на котором определены обе части неравенства, окажется пустым множеством, то в этом случае неравенство решений не имеет.

Использование областей существования наиболее результативен при решении уравнений и неравенств, в состав которых входят функции: y = arcsinx , y = arccosx , y = log a x , y =  x .

Пример 1. Решите неравенство

Проверим полученные значения на исходное неравенство.

Использование ограниченности функций

Использование неотрицательности функций

Пусть левая часть неравенства F ( x )0 есть сумма функций F ( x )= f ( x )+ g ( x ).Установили, что каждая из этих функций неотрицательна на своей области определения. Тогда неравенство F ( x ) ≤ 0 равносильно системе уравнений

При тех же условиях неравенство F ( x ) ≥ 0 сводится к нахождению области определения функции F ( x ):

Пример 2. Решите неравенство
Решение. (1)  f 1( x )+ f 2( x )≥0, (2)

где 1) ООН: (2 x – 1) 4 – (2 x – 1) 2 ≥0  (2 x – 1) 2 ((2 x – 1) 2 –1) ≥0 

(2 x – 1) 2 (2 x – 1–1) (2 x – 1+1) ≥0  (2 x – 1) 2 ( x – 1) x ≥0

2)Так как f 1( x )≥0, f 2( x )≥0 на ООН, то (2)  x  ООН  x  (-  ;0  0,5  1;+  ).

Пример 3. Решите неравенство

Решение. (1)  f 1( x )+ f 2( x ) ≤ 0, (2)

Пример 4. Решите систему неравенств

Решим неравенство (2).

Метод мини-максов (метод оценки)

Иногда неравенство f ( x )  g ( x ) устроено так, что на всей ОДЗ неизвестной х имеет место неравенства f ( x )≥ A , g ( x )≤ A .

а) решение неравенства f ( x ) ≤ g ( x ) сводится к нахождению тех значенийх, для которых f ( x )= A и g ( x )= A , т.е.

б) решение неравенства f ( x )≥ g ( x ) сводится к нахождению ОДЗ неизвестной переменной.

Как понять, что нужно решать именно предложенным методом? Для этого нужно знать основной признак подобных задач: имеется смешанное неравенство, то есть в задании присутствуют разнородные функции, например: линейная и логарифмическая, тригонометрическая и квадратичная.

Пример 5. Решите неравенство

Решение: Преобразуем данное неравенство: . Т.к. , то . Мы получили неравенство вида

Рассмотрим . Преобразуем подлогарифмическое выражение: . Получаем, что подлогарифмическое выражение

Т. к. возрастает при , то

Рассмотрим . Мы знаем, что возрастает. Т. к. то Получаем, что M =1. Следовательно, неравенство равносильно системе:

Решив второе уравнение системы, получаем . Проверим первое уравнение, подставив значение x .

Получаем верное равенство Значит, является решением неравенства .

Использование монотонности функций

Принцип монотонности для неравенств

Пусть функция y = f ( x ) определена и строго монотонна на промежутке М.

Если функция y = f ( x ) возрастает на промежутке М, то

Если функция y = f ( x ) убывает на промежутке М, то

Использование монотонности функций при решении уравнений и неравенств используется чаще всего. Решение уравнений и неравенств с применением монотонности функций основывается на следующих утверждениях:

Теорема о корне

Если в уравнении f ( x )= C = const функция y = f (x) непрерывна и строго монотонна на множестве М, то уравнение имеет на М не более одного корня.

Если в уравнении f ( x )= g ( x ) функция y = f (x) непрерывна и строго возрастает, а функция y = g ( x ) непрерывна и строго убывает на множестве М, то уравнение имеет на М не более одного корня.

Пример 6. Решите неравенство

ООН: 2х-3 ≥ 0  х≥1,5.

Функция возрастает при х≥1,5, как сумма двух возрастающих функций.

Так как , то по теореме о корне х=2 – единственный корень уравнений f ( x )=3.

Пример 7. Решите неравенство 4(1+ log 3( x 2 +3 x -7))≥18-3 x — x 2 (1)

Решение. (1)  4 log 3( x 2 +3 x -7)+( x 2 +3 x -14)≥0 (2)

t=x 2 +3 x– 7 , x 2 +3x –14=t – 7.

где f(t) =4 log 3 t+t – 7.

Функция y = f ( t ) возрастает при t > 0, как сумма двух возрастающих функций.

Так как f (3)=4+3 – 7=0, то по теореме о корне t =3 единственный корень уравнения f ( t )=0.

Пример 8. Решите неравенство

Применим МЗМ. Заменим функции f 1( x ) и f 2( x ) на функции равного знака.

Функция y = f 1( t )= arcos ( t ) убывает на t  -1;1 

Функция y = f 2(х) убывает на хх1;3. Так как f 2(4)=0, то по теореме о корне х=4 единственный корень уравнения f 2(х)=0 

Глава 3. Тренажер «Методы решения неравенств, используя свойства функций»

Мне захотелось составить тренажер по усвоению методов решения неравенств, используя свойства функций. Традиционно ученику предлагается решить неравенство, а я предлагаю ознакомиться с решением неравенства и определить, какой метод используется при решении данного неравенства. Этот тренажер составлен с помощью конструктора интерактивных заданий LearningApps. Учащиеся могут проверить и закрепить свои знания по данным методам, что способствует формированию их познавательного интереса к математике:

https :// learningapps . org / watch ? v = pvh 1 b 1 qak 20

В ходе выполнения исследования были достигнуты поставленная цель и задачи. Гипотеза подтвердилась. Использование свойств функций при решении неравенств: таких как область определения и область значений, неотрицательность, монотонность и ограниченность, экстремумы функций и метод «мини-максов, позволяет избежать огромных преобразований. Применение этих методов дает более рациональное решение неравенства и позволяет повысить эффективность и качество.

Для каждого из указанных типов неравенств приведены методические указания и алгоритмы (схемы), а также подробные и обоснованные решения неравенств разных типов и разного уровня сложности, иллюстрирующие оригинальность и эффективность приведенных методов, позволяющих решать задачи компактно, быстро и просто. Составлен тренажер по усвоению методов решения неравенств, используя свойства функций.

Выбор способа решения должен оставаться за нами, учащимися. Каждый ученик должен уметь верно, и главное рационально решать неравенства, что в дальнейшем может ему пригодиться при поступлении в ВУЗы и различных жизненных ситуациях. Они могут воспользоваться собранной информацией для изучения и закрепления методов решения неравенств.

Я считаю, что проделанная работа будет интересна всем, кто хочет научиться рационально решать неравенства и хорошо подготовиться к выпускным экзаменам.

Хочется отметить и то, что излагаемая тема в данном исследовании еще недостаточно изучена, поэтому она таит в себе много скрытого и неизвестного, что дает прекрасную возможность для дальнейшей работы над ней.

Алгебра и начала анализа: Учебник для 10-11 кл. / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын, Б. М. Ивлев, С. И. Шварцбурд; Под ред. А. Н. Колмогорова. – 12-изд. – М.: Просвещение, АО «Московские учебники», 2002. – 384с.

ЕГЭ 2017. Математика. 10 вариантов экзаменационных работ. Профильный уровень. Под ред. И. В. Ященко/ М.: «Экзамен», 2017.

Куланин Е. Д., Норин В. П. 3000 конкурсных задач по математике. М.:Айрис-пресс, 2003.

Коропец З.Л., Коропец А.А., Алексеева Т.А. Нестандартные методы решения неравенств и их систем. Орел: ОрелГТУ, 2012.

Математика: Учебно-методический журнал – М.: Первое сентября, 2009.

Сергеев И.Н., Панферов В.С. ЕГЭ 2011. Математика. Задача С3. Уравнения и неравенства. / Под ред. А.Л. Семенова, И.В. Ященко. – М.:МЦНМО, 2011.


источники:

http://infourok.ru/po-matematike-na-temu-funkcionalniy-metod-resheniya-uravneniy-i-neravenstv-klass-453639.html

http://school-science.ru/9/7/43679