Свойства материальных сред материальные уравнения

Материальные уравнения

Пусть имеем однородную и изотропную среду, для которой известны диэлектрическая проницаемость и магнитная проницаемость . Эти величины связаны со строением и поведением атомов и молекул среды. Для вакуума эти величины равны единице.

Пятое уравнение Максвеллаустанавливает связь между вектором напряженности электрического поля и вектором электрической индукции. Оно имеет вид:

В эту формулу входит величина , которая называется электростатической постоянной вакуума. Это фундаментальная константа, которая определяет скорость распространения электромагнитных волн в вакууме.

Шестое уравнение Максвеллаустанавливает связь между вектором напряженности магнитного поля и вектором индукции магнитного поля . Оно имеет вид:

Пятое и шестое уравнения Максвелла позволяют рассчитывать характеристики электрического и магнитного полей в некоторой среде, а не только в вакууме. Кроме того, эти уравнения содержат информацию о распространении электромагнитного поля.

Седьмое уравнение Максвелла представляет собой закон сохранения электрического заряда, который может быть записан в различных формулировках.

В дифференциальной форме

Закон сохранения электрического заряда в интегральной форме записывается следующей формулой:

или

Электромагнитная волнапроцесс распространения в пространстве возмущения электромагнитного поля.

Существование электромагнитных волн является следствием уравнений Максвелла.

Это значит, что напряженности Е и Н переменного электромагнитного поля в однородной, изотропной, непроводящей, нейтральной среде должны удовлетворять волновому уравнению, то есть переменное электромагнитное поле будет распространяться в пространстве в виде волны.

Сравнивая полученные уравнения с волновым уравнением, записанным в общем виде получим, что

, где

Из уравнений Максвелла следует также, что в однородной и изотропной среде

Векторы Е и Н вместе с волновым вектором k образуют правую тройку векторов

Электромагнитные волны, как любые волны, не переносят вещество — это распространяющиеся электрические и магнитные поля, они переносят электромагнитную энергию. Для характеристики переноса энергии используют векторное произведение напряженностеи электрического и магнитного поля — вектор Пойнтинга(J. Poynting, 1852-1941), введенный Джоном Пойнтингом в 1884 году

По определению интенсивности волны она равна среднему значению модуля вектора Пойнтинга, при этом усреднение должно проводиться или за целое число периодов или за время, много большее периода колебаний.

Классификация материальных сред

Основные уравнения

Электромагнитного поля

Вся теория электромагнитного поля базируется на четырех экспериментально установленных законах. Это закон Ш.О.Кулона, теоремы К.Га-усса для электрической и магнитной индукции, закон М. Фарадея и закон полного тока А. Ампера. Эти законы были обобщены Дж. К. Максвеллом, который привлек к созданию своей теории великую гипотезу о токе смещения.

Уравнения Максвелла являются фундаментальными в том смысле, что пока не известны более общие законы природы, из которых бы они вытекали. Поэтому уравнения Максвелла нужно знать наизусть! Остальное не нужно заучивать, а нужно понять.

1.1 Векторные характеристики электромагнитного поля

Обсуждаются основные понятия и величины, характеризующие электромагнитное поле в некоторой области пространства

Действие электромагнитного поля обладает определенной направленностью, поэтому для его описания вводят векторные величины.

Рассмотрим векторные характеристики, при помощи которых определяется электромагнитное поле. Их четыре:

– вектор напряженности электрического поля;

– вектор электрической индукции;

– вектор напряженности магнитного поля;

– вектор магнитной индукции.

Определить поле в некоторой области пространства – значит указать эти векторы поля в любой её точке. Дадим теперь определения и рассмотрим физическую сущность векторов электромагнитного поля.

Вектор напряженности электрического поля определяют как силу, с которой электрическое поле действует на внесенный точечный положительный единичный заряд. Связь между вектором и силой , действующей на точечный заряд q, определяется как:

. (1.1)

Следовательно, вектор характеризует именно силовое воздействие электрического поля на заряженные частицы. По закону Кулона:

, где: — единичный вектор.

, [В/м] (1.2)

здесь: , [Ф/м] — диэлектрическая проницаемость вакуума.

Если ограничится только исследованием процессов в вакууме, то задание напряженности электрического поля в каждой точке пространства является достаточным. Однако, как будет показано далее, для правильного описания электрического поля в материальных средах, требуется ввести в рассмотрение второе векторное поле, характеризуемое вектором электрической индукции (электрического сме-щения) . Вектор в вакууме связан с векто-ром соотношением:

. (1.3)

Если в формуле (1.2) вместо подставить вели-чину /eо, то закон Кулона примет вид:

; [Кл/м 2 ] (1.4)

В отличие от электрического поля, которое оказывает силовое воздействие на заряд, находящийся в покое или в движении, магнитное поле действует только на движущиеся заряды.

Вектор магнитной индукции определяют как силу, с которой магнитное поле действует на движущийся положительный единичный заряд. Связь между вектором и силой , действую-щей на точечный заряд q, определяется выражением:

, (1.5)

где: — векторное произведение векторов скорости движения заряда и вектора магнит-ной индукции .

Из формулы (1.5) следует, что магнитная индукция численно равна силе, с которой магнитное поле действует на единичный точечный заряд, движущийся со скоростью перпендикулярно линиям вектора . Магнитная индукция измеряется в Веберах на квадратный метр (Вб/м 2 ). Сила воздействия магнитного поля на движущийся заряд зависит от магнитных свойств среды. Поэтому, подобно тому как это было сделано для электрического поля, удобно ввести еще одну векторную величину для полного описания явлений, происходящих в материальных средах, помещенных в магнитное поле. Это второе векторное поле характеризуется напряженностью магнитного поля и в вакууме связано с соотношением

= /mо ,

откуда: = mо . (1.6)

Напряженность магнитного поля имеет размер-ность “Ампер на метр” (А/м). Величина mо = 4p×10 -7 называется магнитной проницаемостью вакуума и имеет размерность “Генри на метр” (Гн/м).

Для электрического заряда, двигающегося одновременно в электрическом и магнитном полях, мы можем написать уравнения движения уже с учетом всех действующих сил:

.

Сила носит название силы Лоренца.

Величину и направление напряженности элек-трического магнитного полей в пространстве удобно изображать при помощи силовых линий, как показано на рис.1.1. Силовой линией назы-вается такая линия, касательная к которой в каждой точке совпадает с вектором напря-женности в этой же точке. Густота силовых линий условно характеризует модуль амплитуды напряженности поля. Направление напряженности указывается стрелкой.

1.2 Электромагнитные параметры среды

Рассматривается характер влияния электрического и магнитного полей на материальные среды и параметры, количественно характеризующие это влияние.

Уравнения (1.3) и (1.6) характеризуют связь между векторами электромагнитного поля в вакууме. Для установления связи между этими векторами в некоторой материальной среде, необходимо рассмотреть явления, возникающие в материальных средах при воздействии на них электрического и магнитного поля.

Рассмотрим сначала воздействие электрического поля. При отсутствии внешнего электрического поля молекула материальной сред (например, молекула водорода) представляется в виде положи-тельного ядра в центре и вращающегося вокруг него электрона (см. рис.1.2). Посколь-ку орбита вращения практически круговая, то можно считать, что молекула электри-чески нейтральна. При приложении внеш-него электрического поля орбита электрона деформируется, центры положительного и отрицательного, зарядов не совпадают в пространстве. В результате молекула начинает вести себя подобно электрическому диполю, т.е. системе двух связанных противоположно заряженных частиц:

Описанное явление носит название электронной поляризации вещества. Таким образом, при приложении внешнего электрического поля, все молекулы, образовав электрические диполи, займут определенную ориентацию относительно приложенного поля. Внутри материальной среды возникает специфический вид объемного электрического заряда, носящего название поляризационный заряд.

Количественной характеристикой поляризации отдельной молекулы служит ее дипольный момент:

,

где: q – электрический заряд молекулы;

l – смещение электрического заряда молекулы.

Если в единице объема DV находится N молекулярных диполей, то в качестве меры поляризации диэлектрика вводят вектор поляризации.

= .

Для подавляющего большинства веществ существует прямая зависимость между векторами и :

,

где: e0 – диэлектрическая постоянная вакуума, cэ— называется электрической восприимчивостью вещества. Для вакуума, где вещество отсутствует, cэ = 0.

На основании изложенного определим вектор электрической индукции в материальной среде как сумму вектора поляризации и вектора , т.е.:

, (1.7)

где: eа = e0 (1 + cэ) = e0 e – абсолютная диэлектрическая проницаемость среды;

e = (1 + cэ) – относительная диэлектрическая проницаемость среды.

Из (1.7) видно, что вектор не является чисто полевым вектором, поскольку учитывает поляризованность среды, т.е. «реакцию» материальной среды на воздействие электрического поля.

Рассмотрим теперь воздействие магнитного поля на материальную среду.

При отсутствии внешнего магнитного поля, согласно классическим представлениям, молекулы матери-альной среды несут в себе замкнутые токи (так называемая гипотеза Ампера). Обозначим через Iмол величину молекулярного тока, через D – площадь элементарной площадки, вдоль границы которой течет Iмол (рис.1.3). Тогда для количественной харак-теристики каждого отдельного молекулярного тока вводится понятие вектора магнитного момента молекулы:

= Iмол D .

При приложении внешнего магнитного поля магнитные моменты молекул вещества частично ориентируются относительно внешнего поля. Таким образом, под воздействием внешнего магнитного поля материальная среда (вещество) приобретает определенную намагниченность.

Если в единице объема DV находится N молекулярных токов, то в качестве меры намагниченности вещества вводят понятие вектора намагниченности:

= .

Для подавляющего большинства веществ существует прямая зависимость между векторами и :

= m0×cм × ,

где: m0 – магнитная постоянная вакуума; cм – магнитная восприимчивость среды. Для вакуума, где вещество отсутствует, cм = 0.

На основании изложенного определим вектор магнитной индукции в материальной среде как сумму вектора намагниченности и вектора :

+ = mо (1 + cм= mа , (1.8)

вклад движущихся свободных зарядов в материальной среде
вклад молекул вещества материальной среде

где: mа = m0 (1 + cм) = m0×m – абсолютная магнитная проницаемость среды;

m = (1 + cм) – относительная магнитная проницаемость среды.

Несмотря на схожесть формы записи (1.8) с (1.7), в качестве характеристики, учитывающей «реакцию» материальной среды на воздействие магнитного поля, служит вектор напряженности магнитного поля . Отсюда становится ясен физический смысл вектора : он характеризует изменение магнитного поля в веществе, вызванное собственной намагниченностью среды при воздействии внешнего магнитного поля.

Кроме того, материальные среды обладают электропроводностью, т.е. в них под воздействием электрического поля возникает электрический ток, называемый током проводимости (т.е. упорядоченное движение носителей заряда). Закон, связывающий силу тока, протекающего по проводнику, с разностью потенциалов, приложенной к его концам, определяется законом Г.С. Ома: I = U/R. Если данное выражение записать для плотности тока проводимости, то получим закон Ома в дифференциальной форме. Следует четко разделять понятия плотность тока проводимости и ток проводимости. Если в некотором объеме DV происходит движение заряда с некоторой скоростью u, то в результате осуществляется перенос заряда в направлении скорости. Интенсивность этого переноса и характеризуется плотностью тока проводимости Jпр, определяемой формулой:

,

где ui — скорость носителей заряда еi. Из этого выражения видно, что величина имеет размерность «А/м 2 » и в этом смысле действительно является мерой тока, протекающего через единичную площадку, перпендикулярную вектору скорости носителей заряда. Током проводимости называют отношение заряда, пересекающего конечную поверхность S, ко времени:

(1.9)

Перейдем теперь от обычной формы закона Ома к дифференциальной форме, для этого выделим внутри проводника с током весьма малых размеров цилиндр, торцы которого перпендикулярны линиям тока (рис.1.4).

Из-за малости размеров цилиндра будем считать, что плотность тока проводимости постоянна в пределах его торцов, а линии тока параллельны его оси. Согласно закону Ома:

где: R — сопротивление цилиндра;

DU — напряжение между его торцами, которое равняется: DU = E×Dl.

Выразим сопротивление через удельную проводимость s:

далее подставим (1.10) в (1.9):

Разделив обе части последнего равенства на DS, получим соотношение: Jпр = s E, которое можно переписать в векторной форме как:

, (1.12)

где: σ – удельная проводимость среды, которая учитывает силы “внутреннего трения” (столкновения с кристаллической решеткой) носителей тока при движении внутри вещества.

Уравнение (1.12) принято называть законом Ома в дифференциальной форме.

Среда —

называется неоднородной, если εа, μа, и σ меняются от точки к точке и могут быть представлены как функции от пространственных координат.

В зависимости от значения удельной проводимости σ материальные среды подразделяют на три класса:

· диэлектрики, если σ £ 10 –5 См/м;

· проводники, если σ ³ 10 3 См/м;

· полупроводники, если 10 –5 σ 3 См/м.

Во многих задачах электродинамики реальный проводник или диэлектрик с успехом можно заменить на идеализированный. В этом случае используются понятия:

— идеальный проводник, σ = ∞;

— идеальный диэлектрик, σ = 0.

В качестве примера, ниже приведена таблица значений удельной проводимости (табл.1.1.) для некоторых материальных сред.

Таблица 1.1 –Удельные проводимости некоторых веществ

Материалσ, См/мМатериалσ, См/мМатериалσ, См/мСеребро Медь Алюминий Железо Свинец6,14×10 7 5,65×10 7 3,54×10 7 1,0×10 7 0,48×10 7Кварц Мрамор Слюда Стекло Дерево2×10 -17

10 -9Земля сухая Земля влажная Вода пресная Вода морская

Максвелла

Формулируются теоремы Гаусса для электрической и магнитной индукции и характер обобщения этих теорем, сделанных Максвеллом. Дается физическая трактовка непрерывности магнитных силовых линий.

В электростатике известна теорема Гаусса, полученная на основе экспериментальных данных и устанавливающая связь между вектором электрической индукции и величиной порождающего его электрического заряда q.

Теорема Гаусса для электрической индукции :

Поток вектора электрической индукции через любую замкнутую поверхность S равен электрическому заряду, заключенному внут-ри этой поверхности.

. (1.21)

Данное выражение устанавливает:

— источниками силовых линий электрического поля могут являться только электрические заряды.

— силовые линии вектора электрической индукции выходят (начинаются) на положительном заряде и входят (заканчиваются) на отрицательном заряде. Т.е. силовые линии вектора имеют исток и сток.

Количественно поток вектора электрической индукции через некоторую замкнутую поверхность S можно оценить числом пересекающих эту поверхность силовых линий. Причем:

— если число входящих линий больше выходящих, то поток считается отрицательным;

— если число входящих линий меньше выходящих, то поток считается положительным.

Поясним сказанное рис.1.11. Для соответствующих объемов V1, V2 и V3 имеем:

; ; .

Максвелл обобщил теорему Гаусса, предложив рассматривать ее не только для постоянных полей, но и для переменных полей.

Представим (1.21) в более общем виде. Если в некотором замкнутом объеме V, ограниченном поверхностью S заключено несколько электрических зарядов, то совокупный заряд в этой области представляется через объемную плотность электрического заряда ρ:

.

. (1.22)

Полученное выражение носит название 3-го уравнения Максвелла : в интегральной форме:

Поток вектора электрической индукции через любую замкнутую поверхность S равна сумме зарядов в объеме V , ограниченном этой поверхностью.

Для того, чтобы записать 3-е уравнение Максвелла в дифференциальной форме используем теорему Остроградского-Гаусса.

,

. (1.23)

Уравнение (1.23) носит название 3-го уравнения Максвелла в дифференциальной форме.

Из курса общей физики Вам известен экспериментальный факт, что силовые линии магнитного поля независимо от того, создано ли это поле постоянным магнитом или катушкой с переменным током, образуют в пространстве замкнутые линии (например, опыт с железными опилками и постоянным магнитом из школьной программы по физике).

Расположим внутри области существо-вания магнитного поля произвольный объем V, ограниченный поверхностью S. Из замкнутости силовых линий следует, что число входящих линий всегда будет равно числу входящих. Следовательно поток вектора магнитной индукции будет равен нулю. Этот факт закреплен в теореме Гаусса для магнитной индукции :

Поток вектора магнитной индукции В через любую замкнутую поверхность S равен нулю:

. (1.24)

Уравнение (1.24) устанавливает:

— силовые линии вектора магнитной индукции всегда непрерывны, т.е. образуют замкнутые линии.

— в природе не существует магнитных зарядов.

Уравнение (1.24) кроме того, носит название 4-го уравнения Максвелла в интегральной форме.

Используя теорему Остроградского-Гаусса представим 4-ое уравнение Максвелла в дифференциальной форме:

,

(1.25)

Основные уравнения

Электромагнитного поля

Вся теория электромагнитного поля базируется на четырех экспериментально установленных законах. Это закон Ш.О.Кулона, теоремы К.Га-усса для электрической и магнитной индукции, закон М. Фарадея и закон полного тока А. Ампера. Эти законы были обобщены Дж. К. Максвеллом, который привлек к созданию своей теории великую гипотезу о токе смещения.

Уравнения Максвелла являются фундаментальными в том смысле, что пока не известны более общие законы природы, из которых бы они вытекали. Поэтому уравнения Максвелла нужно знать наизусть! Остальное не нужно заучивать, а нужно понять.

1.1 Векторные характеристики электромагнитного поля

Обсуждаются основные понятия и величины, характеризующие электромагнитное поле в некоторой области пространства

Действие электромагнитного поля обладает определенной направленностью, поэтому для его описания вводят векторные величины.

Рассмотрим векторные характеристики, при помощи которых определяется электромагнитное поле. Их четыре:

– вектор напряженности электрического поля;

– вектор электрической индукции;

– вектор напряженности магнитного поля;

– вектор магнитной индукции.

Определить поле в некоторой области пространства – значит указать эти векторы поля в любой её точке. Дадим теперь определения и рассмотрим физическую сущность векторов электромагнитного поля.

Вектор напряженности электрического поля определяют как силу, с которой электрическое поле действует на внесенный точечный положительный единичный заряд. Связь между вектором и силой , действующей на точечный заряд q, определяется как:

. (1.1)

Следовательно, вектор характеризует именно силовое воздействие электрического поля на заряженные частицы. По закону Кулона:

, где: — единичный вектор.

, [В/м] (1.2)

здесь: , [Ф/м] — диэлектрическая проницаемость вакуума.

Если ограничится только исследованием процессов в вакууме, то задание напряженности электрического поля в каждой точке пространства является достаточным. Однако, как будет показано далее, для правильного описания электрического поля в материальных средах, требуется ввести в рассмотрение второе векторное поле, характеризуемое вектором электрической индукции (электрического сме-щения) . Вектор в вакууме связан с векто-ром соотношением:

. (1.3)

Если в формуле (1.2) вместо подставить вели-чину /eо, то закон Кулона примет вид:

; [Кл/м 2 ] (1.4)

В отличие от электрического поля, которое оказывает силовое воздействие на заряд, находящийся в покое или в движении, магнитное поле действует только на движущиеся заряды.

Вектор магнитной индукции определяют как силу, с которой магнитное поле действует на движущийся положительный единичный заряд. Связь между вектором и силой , действую-щей на точечный заряд q, определяется выражением:

, (1.5)

где: — векторное произведение векторов скорости движения заряда и вектора магнит-ной индукции .

Из формулы (1.5) следует, что магнитная индукция численно равна силе, с которой магнитное поле действует на единичный точечный заряд, движущийся со скоростью перпендикулярно линиям вектора . Магнитная индукция измеряется в Веберах на квадратный метр (Вб/м 2 ). Сила воздействия магнитного поля на движущийся заряд зависит от магнитных свойств среды. Поэтому, подобно тому как это было сделано для электрического поля, удобно ввести еще одну векторную величину для полного описания явлений, происходящих в материальных средах, помещенных в магнитное поле. Это второе векторное поле характеризуется напряженностью магнитного поля и в вакууме связано с соотношением

= /mо ,

откуда: = mо . (1.6)

Напряженность магнитного поля имеет размер-ность “Ампер на метр” (А/м). Величина mо = 4p×10 -7 называется магнитной проницаемостью вакуума и имеет размерность “Генри на метр” (Гн/м).

Для электрического заряда, двигающегося одновременно в электрическом и магнитном полях, мы можем написать уравнения движения уже с учетом всех действующих сил:

.

Сила носит название силы Лоренца.

Величину и направление напряженности элек-трического магнитного полей в пространстве удобно изображать при помощи силовых линий, как показано на рис.1.1. Силовой линией назы-вается такая линия, касательная к которой в каждой точке совпадает с вектором напря-женности в этой же точке. Густота силовых линий условно характеризует модуль амплитуды напряженности поля. Направление напряженности указывается стрелкой.

1.2 Электромагнитные параметры среды

Рассматривается характер влияния электрического и магнитного полей на материальные среды и параметры, количественно характеризующие это влияние.

Уравнения (1.3) и (1.6) характеризуют связь между векторами электромагнитного поля в вакууме. Для установления связи между этими векторами в некоторой материальной среде, необходимо рассмотреть явления, возникающие в материальных средах при воздействии на них электрического и магнитного поля.

Рассмотрим сначала воздействие электрического поля. При отсутствии внешнего электрического поля молекула материальной сред (например, молекула водорода) представляется в виде положи-тельного ядра в центре и вращающегося вокруг него электрона (см. рис.1.2). Посколь-ку орбита вращения практически круговая, то можно считать, что молекула электри-чески нейтральна. При приложении внеш-него электрического поля орбита электрона деформируется, центры положительного и отрицательного, зарядов не совпадают в пространстве. В результате молекула начинает вести себя подобно электрическому диполю, т.е. системе двух связанных противоположно заряженных частиц:

Описанное явление носит название электронной поляризации вещества. Таким образом, при приложении внешнего электрического поля, все молекулы, образовав электрические диполи, займут определенную ориентацию относительно приложенного поля. Внутри материальной среды возникает специфический вид объемного электрического заряда, носящего название поляризационный заряд.

Количественной характеристикой поляризации отдельной молекулы служит ее дипольный момент:

,

где: q – электрический заряд молекулы;

l – смещение электрического заряда молекулы.

Если в единице объема DV находится N молекулярных диполей, то в качестве меры поляризации диэлектрика вводят вектор поляризации.

= .

Для подавляющего большинства веществ существует прямая зависимость между векторами и :

,

где: e0 – диэлектрическая постоянная вакуума, cэ— называется электрической восприимчивостью вещества. Для вакуума, где вещество отсутствует, cэ = 0.

На основании изложенного определим вектор электрической индукции в материальной среде как сумму вектора поляризации и вектора , т.е.:

, (1.7)

где: eа = e0 (1 + cэ) = e0 e – абсолютная диэлектрическая проницаемость среды;

e = (1 + cэ) – относительная диэлектрическая проницаемость среды.

Из (1.7) видно, что вектор не является чисто полевым вектором, поскольку учитывает поляризованность среды, т.е. «реакцию» материальной среды на воздействие электрического поля.

Рассмотрим теперь воздействие магнитного поля на материальную среду.

Последнее изменение этой страницы: 2019-05-17; Просмотров: 185; Нарушение авторского права страницы

максвелла уравнения

МАКСВЕЛЛА УРАВНЕНИЯ

1. Краткая история

2. Каноническая форма

3. Максвелла уравнения в интегральной форме

4. Общая характеристика Максвелла уравнений

5. Максвелла уравнения для комплексных амплитуд

6. Алгебраические Максвелла уравнения

7. Материальные уравнения

8. Граничные условия

9. Двойственная симметрия Максвелла уравнений

10. Максвелла уравнения в четырёхмерном представлении

11. Лоренц-инвариантность Максвелла уравнений

12. Лагранжиан для электромагнитного поля

13. Единственность решений Максвелла уравнений

14. Классификация приближений Максвелла уравнений

15. Максвелла уравнения в различных системах единиц

Максвелла уравнения — ур-ния, к-рым подчиняется (в пределах применимости классической ыакроскопич. электродинамики, см. Электродинамика классическая), электромагнитное поле в вакууме и сплошных средах.

1. Краткая история

Установлению M. у. предшествовал ряд открытий законов взаимодействий заряженных, намагниченных и токонесущих тел (в частности, законов Кулона, Био — Савара, Ампера). В 1831 M. Фарадей (M. Faraday) открыл закон эл—магн. индукции и примерно в то же время ввёл понятие электрич. и магн. полей как самостоят, физ. субстанций. Опираясь на фарадеевское представление о поле и введя ток смещения, равнозначный по своему магн. действию обычному электрич. току, Дж. К. Максвелл (J. С. Maxwell, 1864) сформулировал систему ур-ний, названную впоследствии ур-ниями Максвелла. M. у. функционально связывают электрич. и магн. поля с зарядами и токами и охватывают собой все известные закономерности макроэлектромагнетизма. Впервые о M. у. было доложено на заседании Лондонского Королевского общества 27 окт. 18(34. Первоначально Максвелл прибегал к вспомогат. механич. моделям «эфира», но уже в «Трактате об электричестве и магнетизме» (1873) эл—магн. поле рассматривалось как самостоят, физ. объект. Физ. основа M. у.- принцип близкодействия, утверждающий, что передача эл—магн. возмущений от точки к точке происходит с конечной скоростью (в вакууме со скоростью света с). Он противопоставлялся ньютоновскому принципу дальнодействия, сводящемуся к мгновенной передаче воздействий на любое расстояние Матем. аппаратом теории Максвелла послужил векторный анализ, представленный в инвариантной форме через кватернионы Гамильтона. Сам Максвелл считал, что его заслуга состоит лишь в матем. оформлении идей Фарадея.

2. Каноническая форма

Канонич. форма записи, принятая ныне, принадлежит Г. Герцу (H. Hertz) и О. Хевисайду (О. Heaviside) и основана на использовании не кватернионных, а векторных полей: напряжённости электрического поля E, напряжённости магнитного поля H, векторов электрической индукции D и магнитной индукции В. M. у. связывают их между собой, с плотностью электрического заряда и плотностью электрического тока J, к-рые рассматриваются как источники:

Здесь использована Гаусса система единиц (о записи M. у. в др. системах см. в разделе 15). Входящие в (1) — (4) величины E, D, j являются истинными, или полярными, векторами (а величина r — истинным скаляром), поля H к В — псевдовекторами, или аксиальными векторами. Все эти величины предполагаются непрерывными (вместе со всеми производными) ф-циями времени t и координат Следовательно, в ур-ниях (1) — (4) не учитывается ни дискретная структура электрич. зарядов и токов, ни квантовый характер самих полей. Учёт дискретности истинных источников может быть произведён даже в доквантовом (классич.) приближении с помощью ЛоренцаМаксвелла уравнений.

3. Максвелла уравнения в интегральной форме

Используя ГауссаОстроградского формулу и С такса формулу, ур-ниям (1) — (4) можно придать форму интегральных:

Криволинейные интегралы в (1a), (2a) берутся по произвольному замкнутому контуру (их наз. циркуляция-ми векторных полей), а стоящие в правых частях поверхностные интегралы — по поверхностям, ограниченным этими контурами (опирающимся на них), причём направление циркуляции (направление элемента контура) связано с направлением нормали к S (вектор) правовинтовым соотношением (если в качестве исходного выбрано пространство с правыми системами координат). В интегралах по замкнутым поверхностям (S) в (3а), (4а) направление вектора элемента площади совпадает с наружной нормалью к поверхности; V — объём, ограниченный замкнутой поверхностью S.

M. у. в форме (1a) — (4a) предназначаются не только для изучения топологич. свойств эл—магн. полей, но и являются удобным аппаратом решения конкретных задач электродинамики в системах с достаточно высокой симметрией или с априорно известными распределениями полей. Кроме того, в матем. отношении эта система ур-ний содержательнее системы (1) — (4), поскольку пригодна для описания разрывных, нодиффе-ренцируемых распределений полей. Но в отношении физ. пределов применимости обе системы ур-ний равнозначны, т. к. любые скачки полей в макроэлектродинамике должны рассматриваться как пределы микромасштабно плавных переходов, с тем чтобы внутри них сохранялась возможность усреднения ур-ний Лоренца — Максвелла. С этими оговорками резкие скачки можно описывать и в рамках M. у. (1) — (4), прибегая к аппарату обобщённых функций.

Наконец, M. у. в интегральной форме облегчают физ. интерпретацию MH. эл—магн. явлений и поэтому нагляднее сопоставляются с теми экспериментально установленными законами, к-рым они обязаны своим происхождением. Так, ур-ние (1a) есть обобщение Био — Савара закона (с добавлением к току максвелловского смещения тока).

Ур-ние (2a) выражает закон индукции Фарадея; иногда его правую часть переобозначают через «магн. ток смещения»

где— плотность «магн. тока смещения», Ф В — магн. поток. Ур-ние (За) связывают с именем Гаусса , установившим соленоидальность поля В, обусловленную отсутствием истинных магн. зарядов. Впрочем вопрос о существовании магнитных монополей пока остаётся открытым. Но соответствующее обобщение M. у. произведено (Хевисайд, 1885) на основе принципа двойственной симметрии M. у. (см. в разделе 9), для чего в (2) и (2a) наряду с магн. током смещения вводится ещё и «истинный» магн. ток (процедура, обратная проделанной когда-то Максвеллом с электрич. током в первом ур-нии), а в ур-ние Гаусса (3), (За) — магн. заряд

где — плотность магн. заряда. Фактически все экспериментальные установки для регистрации ожидаемых магнитных монополей основаны на этом предположении. Наконец, ур-ние (4a) определяет поле свободного электрич. заряда; его иногда называют законом Кулона (Ch. A. Coulomb), хотя, строго говоря, оно не содержит утверждения о силе взаимодействия между зарядами, да и к тому же справедливо не только в электростатике, но и для систем с произвольным изменением поля во времени. На тех же основаниях иногда и ур-нпе (Ia) связывают с именем Ампера (A. Ampere).

4. Общая характеристика Максвелла уравнений

Совокупность M. у. (1) — (4) составляет систему из восьми (двух векторных и двух скалярных) линейных дифференц. ур-ний 1-го порядка для четырёх векторов Источники (скаляри вектор) не могут быть заданы произвольно; применяя операцию к ур-нию (1) и подставляя результат в (4), получаем:

или в интегральной форме:

Это ур-ние непрерывности для тока, содержащее в себе закон сохранения заряда для замкнутых изолнров. областей,- один из фундам. физ. принципов, подтверждаемых в любых экспериментах.

Ур-ния (1) — (4) распадаются на два самостоят, «блока»: ур-ния (1) и (4), содержащие векторы и источники и ур-ния (2) и (3) — однородные ур-ния для не содержащие источников. Ур-ння (2) и (3) допускают получение общего решения, в к-ромвыражаются через т. H. потенциалы электромагнитного поляПри этом ур-ние (3) «почти следует» из (2), т. к. операция (у), применённая к (2), даёт что отличается от (3) только константой, определяемой нач. условиями. Аналогично ур-ние (4) «почти следует» из (1) и ур-ния непрерывности (5).

Система M. у. (1) — (4) не является полной: по существу, она связывает 4 векторные величины двумя векторными ур-ниями. Её замыкание осуществляется путём добавления соотношений, связывающих векторы 1-го «блока»с векторами 2-го «блока» Эти соотношения зависят от свойств сред (материальных сред), в к-рых происходят эл—магн. процессы, и наз. материальными ур-ниями (см. раздел 7).

5. Максвелла уравнения для комплексных амплитуд

В силу линейности системы (1) — (4) для её решений справедлив суперпозиции принцип .Часто оказывается удобным фурье-представление общего решения (1) — (4) как ф-ции времени (см. Фурье преобразование). Записывая временной фактор в виде , для комплексных фурье-амплитуди т. д.) получаем систему ур-ний

Система (1б) — (4б) в нек-ром смысле удобнее (1) — (4), ибо упрощает применение к эл—динамич. системам, обладающим временной дисперсией (см. раздел 7), т. е. зависимостью параметров от частоты

6. Алгебраические Максвелла уравнения

Если распространить (в силу линейности M. у.) фурье-разложение и на зависимость полей от пространственных координат, т. е. представить общее решение ур-ний (1) — (4) в виде суперпозиции плоских волн типа (k — волновой вектор), то для фурье-компонентов нолейk и т. д.) получим систему алгебраич. ур-ний:

Такое сведение M. у. к набору ур-ний для осцилляторов (осцилляторов поля) составляет важный этап перехода к квантовой электродинамике, где эл—магн. поле рассматривается как совокупность фотонов, характеризуемых энергиями и импульсами Однако и в макроэлектродинамике представления (1в) — (4в) оказываются иногда вполне адекватными физ. сущности процессов: напр., при выделении откликов высокодобротных систем (см. Объёмный резонатор) или при изучении «механизма формирования» мод со сложной пространственной структурой из набора плоских волн и т. п. Наконец, M. у. в форме (1в) — (4в) удобны для описания свойств эл—динамич. систем, обладающих не только временной, но и пространственной дисперсией, если последняя задаётся в виде зависимости параметров от волнового вектора k.

7. Материальные уравнения

В макроэлектродинамике материальные связи, характеризующие эл—магн. свойства сред, вводятся феноменологически; они находятся либо непосредственно из эксперимента, либо на основании модельных представлений. Существуют два способа описания: в одном векторы E и H считаются исходными и материальные ур-ния задаются в виде D = D(E , H) и В = В( Е,Н), в другом — за исходные берутся векторы 2-го «блока» E и В, и соответствующие материальные связи представляются иначе: D = D(E,В), H= H(E, В). Оба описания совпадают для вакуума, где материальные уравнения вырождаются в равенства D = E и B = H.

Рассмотрим простейшую модель среды, характеризуемую мгновенным, локальным поляризац. откликом на появляющиеся в ней поля E и H. Под действием поля E в такой среде возникает электрич. поляризация (см. Поляризации вектор), а под действием поля H — магн. поляризация . Чаще её наз. намагниченностью и обозначают М.

Материальные ур-ния для таких сред имеют вид

При этом индуцированные в среде электрич. заряды наз. связанными или поляризац. зарядами с плотностью , а токи, обусловленные их изменениями,- поляризац. токами с плотностью:

Эти понятия были перенесены и на магн. поля, что можно выразить в виде системы ур-ний, аналогичной

и только потом выяснилось, что истинными источниками намагничивания среды оказались электрич. токи , а не магн. заряды. Поэтому терминология сложилась на основе физически некорректной системы

тогда как следовало бы принять беззарядовые ур-ния

что равносильно замыканию исходных M. у. (1) — (4) с помощью материальных связей

Из (6) и (7a) следует, что 2-й вариант представления материальных соотношений, в к-ром постулируются в качестве исходных векторы E и B, физически предпочтительнее.

В модели Лоренца — Максвелла усреднение микрополя Нмикро, произведённое с учётом вклада со стороны индуциров. полей, приводит к ур-ниям (9) и соответственно = В. Однако обычно параметры сред вводятся с помощью ур-ний (7), что облегчает двойственную симметризацию ф-л (подробнее см. в разделе 9). Напр., скалярные восприимчивости сред (c e , c m ) определяются соотношениями

Простейшие модели сред характеризуются пост, значениямиВ случае вакуума0.

Классификация разл. сред ооычно основывается на материальных ур-ниях типа (10) и их обобщениях. Если проницаемости e и m не зависят от полей, то M. у. (1) — (4) вместе с материальными ур-ниями (10) остаются линейными, поэтому о таких средах говорят как о линейных средах. При наличии зависимостейсреды наз. нелинейными: решения M. у. в нелинейных средах не удовлетворяют принципу суперпозиции. Если проницаемости зависят от координат то говорят о неоднородных средах, при зависимости от времени — о нестац попарных средах (иногда такие эл—динамич. системы наз. параметрическими). Для анизотропных сред скаляры e, m в (10) заменяются на тензоры: (по дважды встречающимся индексам производится суммирование). Важное значение имеют также эффекты запаздывания и нелокальности отклика среды на внеш. поля.

Значение индуциров. поляризации Р е , напр, в момент г, может определяться, вообще говоря, значениями полей во все предыдущие моменты времени, т. е.

что при преобразовании Фурье по времени приводит к зависимости [соответственноi]. Такие среды наз. средами с временной (частотной) дисперсией или просто диспергирующими средами. Аналогичная связь устанавливается и для нелокальных взаимодействий, когда отклик в точке г зависит от значения полей, строго говоря, во всех окружающих точкахно обычно всё-таки в пределах нек-рой конечной её окрестности: При преобразовании Фурье по г это приводит к появлению зависимостей такие среды наз. средами с пространственной дисперсией (см. Дисперсия пространственная).

В проводящих средах входящая в M. у. (1) — (5) плотность тока состоит из двух слагаемых: одно по-прежнему является сторонним токомобусловленным заданным перемещением электрич. зарядов под действием сторонних сил (обычно неэлектрич. происхождения), а другое — током проводимостизависящим от полей, определяемых системой M. у., и связанным с ними материальными ур-ниями вида В простейшем случае эта зависимость сводится к локальному Ома закону,

где электропроводность (проводимость) среды. Иногда в (11) вводят обозначение, благодаря к-рому различают системы с заданными токами и системы с заданными полями (напряжениями). Для синусоидальных во времени полей, подчинённых ур-ниям (1б) — (4б) и материальным связям (10) и (11), вводится комплексная диэлектрич. проницаемость, объединяющая (10) и (11),, мнимая часть к-рой обусловлена проводимостью и определяет диссипацию энергии эл—магн. поля в среде. По аналогии вводится комплексная магн. проницаемость, мнимая часть к-рой обусловливает потери, связанные с перемагничиванием среды. Комплексные проницаемости в общем случае зависят от частоты w и волнового вектораэти зависимости не могут быть произвольными: причинности принцип связывает их действительные и мнимые части КрамерсаКронига соотношениями.

В общем случае вид материальных ур-ний зависит также и от системы отсчёта, в к-рой эти ур-ния рассматривают. Так, если в неподвижной системе К среда характеризуется простейшими ур-ниями (10), то в инер-циальной системе К’ , движущейся относительно К с пост, скоростью и, появляется анизотропия:

где индексыобозначают продольные и поперечные ксоставляющие векторов. В рамках алгебраич. M. у. (1в) — (4в) материальные ур-ния (12) могут быть переписаны в виде

что можно трактовать как наличие временной и пространственной дисперсии. Исследование процессов с материальными связями типа (12) составляет предмет электродинамики движущихся сред. Заметим, что хотя характеристики е и m удобно симметризуют материальные ур-ния, их введение не является непременным условием замыкания M. у. Соответствующей перенормировкой допустимо свести описание магн. поля к одно-векторному, т. е. сделать но при этом даже для изотропной среды диэлектрич. проницаемость становится тензором, она различна для вихревых и потенциальных полей. Физически это связано с неоднозначностью модельного представления диполь-ных моментов, во всяком случае приони могут равноправно интерпретироваться и как зарядовые, и как токовые.

8. Граничные условия

Поскольку M. у. справедливы для любых (в рамках применимости макроэлектродинамики) неоднородных сред, то в областях резкого изменения их параметров иногда можно игнорировать тонкую структуру распределения полей в переходном слое и ограничиться «сшиванием» полей по разные стороны от него, заменяя тем самым переходный слой матем. поверхностью — границей, лишённой толщины. Если внутри переходной области имелись заряды с объёмной плотностьюили токи с объёмной плотностьюто при сжатии слоя в поверхность сохраняются их интегральные значения ·- вводятся поверхностные заряды r пов и поверхностные токи

— толщина переходного слоя.

Применение M. у. и ур-ния непрерывности приводит к следующим граничным условиям:

Здесь индексы 1 и 2 характеризуют поля по разные стороны от границы, а— единичный вектор нормали к поверхности, направленный из среды 1 в среду 2. Правила (1г) — (5г) пригодны для перехода через любые поверхности, независимо от того, совпадают ли они с границами раздела сред или проходят по однородным областям, поэтому их иногда наз. поверхностными M. у.

Иногда граничные условия (1г) — (5г) порождают краевые условия, т. е. задают не правила перехода через границу, а сами поля на ней. Напр., внутри идеального проводника в силу (11) (иначе возник бы ток неограниченной плотности), поэтому на границе раздела диэлектрик — идеальный проводник в согласии с (2г)Такие границы наз. идеальными электрич. стенками. Аналогично вводится понятие идеальной магн. стенки, на к-рой Если структура полей по одну сторону от границы универсальна, т. е. не зависит от распределения полей по др. сторону, то краевые условия могут состоять в задании не самих полей, а лишь связей между ними, напр. где Z — нек-рая скалярная или тензорная ф-ция координат границы (— тангенциальный компонент). К условиям такого рода относится, в частности, Леонтовича граничное условие для синусоидально меняющихся во времени полей на поверхности хороших проводников.

9. Двойственная симметрия Максвелла уравнений

Двойственная симметрия M. у. имеет место для любой формы их записи. Она состоит в инвариантности M. у. относительно линейных преобразований нолей, производимых по след, правилам:

Здесь— произвольный угл. параметр; в частности, при= О получаются тождественные преобразования, а при — стандартные преобразования перестановочной двойственности (операция ): замена даёт в областях, свободных от источников, новое решение M. у. При этом, однако, оно меняет местами ур-ния

и, следовательно, там, где раньше были распределены электрич. источники, возникают источники магнитные

. Поэтому с точки зрения двойственной симметрии M. у. задание материальных связей в виде представляется вполне удобным. Дуально-симметричные M. у. обладают рядом достоинств, по крайней мере в чисто методич. плане. Так, напр., они симметризуют скачки тангенциальных компонентов магн. и электрич. полей и, если задание ff Tall на поверхности идеальной электрич. стенки эквивалентно заданию поверхностного электрич. тока, то задание Я 1а „ на идеальной магн. стенке сводится к заданию магн. поверхностного тока:

Таким сведением задач с заданнымиполями к задачам с заданными токами широко пользуются в теории дифракции волн, в частности в дифракции радиоволн.

Принцип перестановочной двойственности является представителем класса дискретных преобразований (см. Симметрия ),оставляющих инвариантными M. у. Такого же сорта преобразованиями являются, в частности, операция обращения времени

последовательно осуществляемые комбинации операций

10. Максвелла уравнения в четырёхмерном представлении

Придавая времени t смысл четвёртой координаты и представляя её чисто мнимой величиной (см. Минковского пространство-время ),можно заключить описание электромагнетизма в компактную форму. Эл—магн. поле в 4-описании может быть задано двумя антисимметричными тензорами

гдеЛеви-Чивиты символ ,лат. индексы пробегают значения 1, 2, 3, 4, а греческие — 1, 2, 3. В 4-век-торе тока объединены обычная плотность тока j e и плотность электрич. заряда

аналогично вводят 4-вектор магн. тока.

В этих обозначениях M. у. допускают компактное 4-мерное представление:

Взаимной заменой векторов поля и индукции в ф-лах (13),(14) вводятся тензоры индукции эл—магн. поля

через к-рые также могут быть записаны M. у.:

Любая пара тензорных ур-ний, содержащая в правых частях оба 4-тока (электрич. и мат.), тождественна системе M. у. Чаще используют пару ур-ний (15 а), (18), при этом материальные ур-ния сводятся к функциональной связи между тензорами (последний чаще обозначают через.

Из антисимметрии тензоров поля, индукции и M. у. в форме (17) — (18) следует равенство нулю 4-дивергенций 4-токов:

к-рое представляет собой 4-мерную запись ур-ний непрерывности для электрич. (магн.) зарядов. T. о., 4-векторы токов являются чисто вихревыми, и соотношения (17), (18) можно рассматривать как их представление в виде 4-роторов соответствующих тензоров. Наряду с представленным здесь вариантом часто используется также 4-мерное описание, в к-ром временная координата (обычно с индексом О) берётся действительной, но 4-мерному пространству приписывается гипербодич. сигнатура в таком пространстве приходится различать ко- и контравариантные компоненты векторов и тензоров (см. Ковариантность и контравариантность).

11. Лоренц-инвариантность Максвелла уравнений

Все экспериментально регистрируемые эл—динамич. явления удовлетворяют относительности принципу .Вид M. у. сохраняется при линейных преобразованиях, оставляющих неизменным интервал и составляющих 10-мерную Пуанкаре группу: 4 трансляции, 3 пространственных (орто-) поворота и 3 пространственно-временных (орто-хроно-) поворота, иногда называемых ло-ренцевыми вращениями. Последние соответствуют перемещениям системы отсчёта вдоль осей x a с пост, скоростямиВ частности, для получается простейшая разновидность Лоренца преобразований:

, где Соответственно поля преобразуются по правилам:

Релятивистски-ковариантная запись M. у. позволяет легко находить инвариантные комбинации полей, токов и потенциалов (4-скаляров или инвариантов Лоренца группы), сохраняющихся, в частности, при переходе от одной инерциальной системы отсчёта к другой. Во-первых, это чисто полевые инварианты (см. Инварианты электромагнитного поля ).Во-вторых, это токовые (источниковые) инварианты:

В-третьих, это потенциальные инварианты:

где— магн. потенциалы (получающиеся из А е и преобразованием перестановочной двойственности), источниками к-рых являются магн. токи j m и заряды. И, наконец, многочисл. коыбиниров. инварианты типаи им подобные. Число таких комбиниров. инвариантов (квадратичных, кубичных и т. д.) по полям н источникам неограниченно.

12. Лагранжиан для электромагнитного поля

M. у. могут быть получены из наименьшего действия принципа, т. е. их можно совместить с ЭйлераЛаг-ранжа уравнениями, обеспечивающими вариационную акстремальность ф-ции действия:

здесь лагранжиан ,являющийся релятивистски-инвариантной величиной; интегрирование ведётся по 4-мерному объёму V, (t 2 — t 1 ) с фиксиров. границами. В качестве обобщённых координат принято обычно использовать потенциалы А a и f. Поскольку лагран-жев формализм должен давать полное (замкнутое) динамич. описание системы, то при его построении нужно принимать во внимание материальные ур-ния. Они фигурируют как зависимости связанных зарядов и токов от полей В и Е·

В результате лагранжиан принимает вид инвариантной комбинации полей, потенциалов и источников:

А ур-ния Эйлера — Лагранжа для нек-рой обобщённой координаты получают приравниванием нулю соответствующих вариационных производных:

Для приходим к (4), для- к ур-нию (1) в соответствующих обозначениях. Вариационный подход позволяет придать теории универсальную форму описания, распространяемую и на описания динамики любых взаимодействий, даёт возможность получать ур-ния для комбиниров. динамич. систем, напр, электромеханических. В частности, для систем с сосредоточенными параметрами, характеризуемых конечным числом степеней свободы, соответствующие ур-ния наз. ур-ниями Лагранжа — Максвелла.

13. Единственность решений Максвелла уравнений

Различают теоремы единственности для стационарных и нестационарных процессов. Условия единственности нестационарных решений извлекаются из Пойн-тинга теоремы, где источники считаются заданными ф-циями координат и времени. Если бы они порождали два разл. поля, то разность этих полей в вакууме (или в любой линейной материальной среде) вследствие принципа суперпозиции была бы решением однородных M. у. Для обращения этой разности в нуль и, следовательно, получения единств, решения достаточно удовлетворить след, трём условиям. 1) На поверхности S, окружающей область V, где ищется поле, должны быть заданы тангенциальные составляющие поля Е тан или поля Н тан либо соотношения между ними импедансного типа: (п — нормаль к S) со значениями Z, исключающими приток энергии извне. К таковым относятся, в частности, условия излучения (см. Зоммерфельда условия излучения ),к-рым удовлетворяют волны в однородной среде на больших расстояниях от источников. Во всех случаях поток энергии для разностного поля вообще исчезает или направлен наружу (из объёма). 2) В нач. момент времени должны быть заданы все поля всюду внутри V. 3) Плотность энергии электромагнитного поля HB) должна быть положительна (вакуум, среды с . Эта частная теорема единственности обобщается на среды с нелокальными связями, а также на нек-рые виды параметрич. сред. Однако в нелинейных средах, где принцип суперпозиции не работает, никаких общих утверждений о единственности не существует.

В стационарных режимах нач. условия выпадают, и теоремы единственности формулируются непосредственно для установившихся решений. Так, в электростатике достаточно задать все источники r e ст , все полные заряды на изолиров. проводниках или их потенциалы, чтобы при соответствующих условиях на бесконечности (нужное спадание поля) решение было бы единственным. Аналогичные теоремы устанавливаются для магнитостатики и электродинамики пост, токов в проводящих средах.

Особо выделяется случай синусоидальных во времени процессов, для к-рых формулируют след, признаки, достаточные для получения единств, решения: 1) задание источников задание E тан или Н тан на ограничивающей объём V поверхности S или соответствующих импедансных условий, обеспечивающих отсутствие потока вектора Пойнтинга внутрь V; 3) наличие малого поглощения внутри V или малой утечки энергии через S для исключения существования собств. колебаний на частоте

14. Классификация приближений Максвелла уравнений

Классификация приближений M. у. обычно основывается на безразмерных параметрах, определяющих и критерии подобия для эл—магн. полей. В вакууме таким параметром является отношение , где — характерный масштаб изменения полей (либо размер области, в к-рой ищется решение), — характерный временной масштаб изменения полей.

а) а = 0 — статич. приближение, статика.

Система M. у. распадается на три.

Материальная связь в простейшем случае имеет вид . Это система M. у. для электростатики, в к-рой источниками служат заданные распределения плотности электрич. заряда и сторонней поляризации . В однородной среде эл—статич. потенциал f определяется Пуассона уравнением


источники:

http://lektsia.com/10x9f6.html

http://www.femto.com.ua/articles/part_1/2141.html