Свойства оксида свинца в уравнениях

Оксид свинца: формула, свойства, метод получения

В этой статье мы разберемся с тем, что собой представляет оксид свинца, покажем его формулу, рассмотрим химические и физические характеристики, а также не забудем рассказать о способах его получения. В общем, эта статья понравится тем, кто хочет или уже разбирается в химии. Ведь свинец встречается повсеместно. Если вы до сих пор не знаете область его применения, то прочитайте статью, чтобы понять весь потенциал этого химического элемента таблицы Менделеева.

Способы его получения

Изначально разберемся, как называется оксид свинца. Он традиционно именуется окисью свинца и представляют собой группу бинарных веществ, образованных элементами металла свинца и неметалла кислорода. Существует шесть основных форм PbO: PbO2, PbO, Pb12O19, Pb12O17, Pb3O4. Каждая из них имеет свои особенности строения молекулы, способы получения и область применения. Самые распространенные формы — это оксид свинца (II) и (IV).

Физические характеристики

Оксид свинца, формула которого PbO, может находиться в двухвидовых модификациях: высоко- и низкотемпературных. Переходы от высокотемпературной формы к низкотемпературной происходят медленнее, чем в обратном порядке. Вследствие этого элемент может пребывать в метастабильности при комнатной температуре, а в процессе растирания изменять модификационную форму.

Испарение протекает конгруэнтно, чаще всего в формах Pb2O2 и Pb4O4. Также данная группа оксидов является полупроводником. По типу проводимости, в зависимости от состава, но не превышая пределы гомогенности, оксиды бывают дырочными и электронными. По цвету они обычно бывают желтыми, красными и черными.

Химические особенности и свойства

Растворение хорошо протекает в азотной и кислородной кислотах, ухудшается растворимость в серной и соляной кислоте, так как образуются PbC12 и PbSO4, которые слаборастворимы. При растворении в щелочной среде образуются гексагидроксоплюмбаты (Na2[Pb(OH)4]). Они являются сильными окислителями, некоторые из них могут проявлять свойства амфотеров — окисляться и поглощать другие вещества. Все они способны окисляться до различных состояний, например, на открытом воздухе PbO при температуре 370 градусов перейдет в состояние молекулы Pb12O17, при 540 градусах образуется Pb3O4, а в водородной (H2) и монооксид углеродной (СО) среде вновь образуется металл путем восстановления.

Оксид свинца II

PbO является неорганическим соединением, которое в воде растворяется плохо. Это бинарное вещество в виде кристаллов красного или желтого цвета. В данном соединении свинец проявляет вторую валентность, соответствуя постоянной валентности кислорода. Встречается в природе с примесями, например, в массикоте или свинцовом глёте.

Как получить оксид свинца в промышленности? Его получают путем пропускания кислорода через свинец, нагретый до температуры 600 градусов (2Pb+O2—2PbO), путем нагревания гидроксида свинца при температурах около 100-145 градусов (Pb(OH)2—PbO+CO2), разложением нитратов (2Pb(NO3)2—2Pb+4NO2+O2), прогреванием карбоната свинца (PbCO3—PbO+CO2), разложением диоксидов свинца (2PbO2—PbO+O2) и окислением сульфидов свинца (2PbS+3O2—2PbO+2SO2).

По своим свойствам PbO (II) способен образовать кристаллы в двух модификационных вариантах, которые устойчивы при 489 градусах и выше.

Альфа модификация (свинцовый углет) представляет собой кристаллы красного цвета тетрагональной сингонии, имеют пространственную группу P 4/nmm. Показатель растворимости в воде — α 0,279 22 . Бета модификация (массикот) проявляет метастабильность при комнатных температурах, имеет желтый цвет, кристаллическую форму, ромбическую сингонию, пространственную группу P bcm. Показатель растворимости в воде — β 0,513 22 г/100 мл.

Оксид свинца может проявлять свойства амфотеров при взаимодействии с кислотами (PbO+2HCl—PbCl2+H2O), щелочами (PbO+2NaOH—(400градусов)Na2PbO2+H2O). Способен окисляться, взаимодействуя с кислородом до Pb3O4, а в водной суспензии бромом окисляется до диоксида свинца PbO2. Восстановление до металла происходит при участии оксида углерода, водорода и алюминия. В состоянии влажности поглощает диоксид углерода, образуя при этом основные соли.

Оксид свинца IV

Оксид свинца 4, он же диоксид свинца, имеет формулу PbO2. Является оксидом высших степеней. Как и другие соединения свинца с кислородом является бинарным веществом. Это порошок тёмно-коричневого цвета, довольно тяжелый, которому присущ запах озона. Раньше его можно было встретить под названием пероксид, или перекись свинца.

Добывают PbO2 в промышленности при помощи обработки азотной кислотой сурика свинца, после чего проводится промывка, помещение в вакуум и сушка: Pb3O4+4HNO3—PbO2+2Pb(NO3)2+2H2O.

Температура плавления данного соединения равна 290 градусов, плотность составляет 9.38г/ см³, молярная масса — 239,1988г/моль. Диоксид свинца 4 является очень сильным окислителем, способен вытеснять из концентрированной соляной кислоты хлор в результате нагревания (PbO2+4HCl—PbCl2+Cl2+2H2O). Соли марганца (II) также поддаются окислению до перманганата (5PbO2+2MnSO4+3H2SO4—5PbSO4+2HMnO4+2H2O). Является весьма токсичным веществом.

Применение

Области применения диоксидов свинца самые разнообразные. Оксид свинца 4 находит свое применение, выполняя функцию сиккативов (маслянистых веществ, необходимых для ускорения процесса засыхания красок), катализатора (вещества, необходимого для ускорения протекания химических реакций между соединениями, которые при этом не входят в конечный состав продуктов любых протекающих реакций) и окислителя (вещества, в состав которого входят атомы, способные присоединять к себе свободные электроны в процессе химической реакции, окислитель также можно назвать акцептором).

PbO2 широко используется в свинцово-сернокислотных аккумуляторах, в роли положительных электронных масс в гальванических элементах. Часто, но в малых количествах может применяться как покрытие для электродов, чтобы улучшить электролизный процесс. Диоксид свинца 2 используют при изготовлении суриков, PbO2 можно встретить в аккумуляторах. Оксид свинца широко используется в области изготовления свинцовых стёкол и глазурей. Pb3O4 можно встретить в свинцовых аккумуляторах в качестве замазки и как пигмент для красок против коррозии. Большинство оксидов свинца используют при изготовлении радиотехники, резинотехнической продукции. Также незаменимы они в процессе добычи свинцовых солей при химическом синтезе.

Оксид свинца II

Оксид свинца II
Систематическое
наименование
Оксид свинца
Традиционные названияОкись свинца
Хим. формулаPbO
Рац. формулаPbO
Состояниеα-красные, β-жёлтые кристаллы
Молярная масса223,20 г/моль
Плотностьα 9,13; 9,40
β 9,45; 9,63 г/см³
Т. плав.886 °C
Т. кип.1535 °C
Мол. теплоёмк.46,41 Дж/(моль·К)
Энтальпия образования-218,6 кДж/моль
Растворимость в водеα 0,279 22
β 0,513 22 г/100 мл
ГОСТГОСТ 9199-77 ГОСТ 5539-73
Рег. номер CAS1317-36-8
PubChem14827
Рег. номер EINECS215-267-0
SMILES
RTECSOG1750000
ChEBI81045
Номер ООН3288
ChemSpider14141
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Оксид свинца II — бинарное неорганическое соединение металла свинца и кислорода с формулой PbO, красные или жёлтые кристаллы, плохо растворимые в воде.

Содержание

  • 1 Получение
  • 2 Физические свойства
  • 3 Химические свойства
  • 4 Применение
  • 5 Физиологическое действие

Получение

  • В природе встречаются минералы свинцовый глёт и массикот — оксид свинца PbO с различными примесями.
  • Пропуская воздух через расплавленный свинец:

2Pb + O2 → 600oC 2PbO

  • Нагревание гидроксида свинца:

Pb(OH)2 → 100−145oC PbO + H2O

  • Нагревание карбоната свинца:

PbCO3 → 315oC PbO + CO2

  • Разложение нитрата свинца:

2Pb(NO3)2 → 200−470oC 2PbO + 4NO2 + O2

  • Разложение диоксида свинца:

2PbO2 → 600oC 2PbO + O2

  • Окисление сульфида свинца:

2PbS + 3O2 → 1200oC 2PbO + 2SO2

Физические свойства

Оксид свинца II образует кристаллы двух модификаций:

  • α-модификация, свинцовый глёт, устойчивый до температуры 489°С, красные кристаллы тетрагональной сингонии, пространственная группа P 4/nmm, параметры ячейки a = 0,396 нм, c = 0,500 нм, Z = 4.
  • β-модификация, массикот, устойчивый при температуре выше 489°С, при комнатной температуре метастабилен, жёлтые кристаллы ромбической сингонии, пространственная группа P bcm, параметры ячейки a = 0,5492 нм, b = 0,4497 нм, c = 0,5891 нм, Z = 4.

Диамагнитен, обладает полупроводниковыми свойствами, тип проводимости зависит от состава.

Химические свойства

  • Проявляет амфотерные свойства, реагирует с кислотами:

PbO + 2HCl → PbCl2 + H2O

  • и щелочами:

PbO + 2NaOH → 400oC Na2PbO2 + H2O

  • Во влажном состоянии поглощает углекислоту с образованием основной соли:

2PbO + CO2 + H2O → Pb2(OH)2CO3

  • Окисляется кислородом:

6PbO + O2 → 445−480oC 2Pb3O4

  • Бромом в водной суспензии окисляется до диоксида свинца:

PbO + Br2 + H2O → PbO2 + 2HBr

  • Восстанавливается до металлического свинца водородом, оксидом углерода, алюминием (со взрывом):

PbO + H2 → 200−350oC Pb + H2O PbO + CO → 3 00−400oC Pb + CO2 3PbO + 2Al → T 3Pb + Al2O3

Применение

  • В производстве сурика и других соединений свинца.
  • Как компонент свинцово-кислотных аккумуляторов.
  • В производстве свинцовых стёкол (хрусталь, флинтглас) и глазурей.
  • При производстве олиф (сиккатив).

Как и все соединения свинца, оксид свинца(II) токсичен.

Физиологическое действие

Оксид свинца ядовит, как и все его соединения. Относится ко 2-му классу опасности.

Примеры решения задач по химии

Пример 1. Докажите, что оксид свинца (II) имеет амфотерный характер.

Р е ш е н и е. Для доказательства амфотерного характера любого оксида (или гидроксида) необходимо привести уравнения химических реакций, в которых эти соединения проявляют основные и кислотные свойства.

1) Основные свойства оксида свинца (II) можно проиллюстрировать на примере взаимодействия РbО с веществами, имеющими кислотный характер, т.е. с кислотой и кислотным оксидом: РbО + 2НNO3 = Pb(NO3)2 + Н2О

PbO + SiO2 = PbSiO3

В приведенных реакциях РЬО проявляет свойства основного оксида, так как реагирует с кислотой и кислотным оксидом и образует соли, в состав которых свинец входит в виде катиона Pb2 + .

2) Кислотные свойства оксида свинца (II) можно продемонстрировать с помощью реакций взаимодействия РbО со щелочами и с основными оксидами:

РbО + 2NaOH = Na2PbO2 + Н2О – в расплаве

РbО + Na2O = Na2PbO2 – в расплаве

РbО + 2NaOH + Н2О = Na2 [Pb(OH)4] – в растворе

В этих реакциях РbО выступает в роли кислотного оксида и образует соли, в состав которых свинец входит в виде аниона РbО22- или комплексного иона [Рb(ОН)4 ]2-.

Таким образом, РbО является амфотерным оксидом, так как он проявляет и основные, и кислотные свойства.

Пример 2. Напишите уравнения всех возможных реакций между следующими веществами, взятыми попарно: оксид калия, оксид фосфора (V), гидроксид натрия, серная кислота, гидросульфат натрия, гидроксид бериллия.

Р е ш е н и е. 1) Устанавливаем принадлежность каждого из этих веществ к определенному классу неорганических соединений: К2О – основный оксид, Р2О5 – кислотный оксид, NaOH – основание (щелочь), H2SO4 – кислота, NaHSO4 – кислая соль, Ве(ОН)2 – амфотерный гидроксид.

2) Используя сведения о химических свойствах оксидов, гидроксидов и солей, напишем уравнения реакций между представителями этих классов соединений.

Основный оксид К2О может взаимодействовать с кислотным оксидом, кислотой и амфотерным гидроксидом: 3К2О + 2Р2О5 = 2К3РО4

К2О + H2SO4 = K2SO4 + Н2О

К2О + Ве(ОН)2 = К2ВеО2 + Н2О

Кислотный оксид Р2О5 может взаимодействовать с основным оксидом, основанием и амфотерным гидроксидом:

Р2О5 + ЗК2О = 2К3РО4

Р2О5+ 6NaOH = 2Na3PO4 + 3Н2О

Р2О5 + ЗВе(ОН)2 = Ве3(РО4)2 + 3Н2О

Основный гидроксид NaOH реагирует с кислотным оксидом, кислотой, амфотерным гидроксидом и кислой солью:

6NaOH + Р2О5 = 2Na3PO4 + ЗН2О

2NaOH + H2SO4 = Na2SO4 + 2Н2О

2NaOH + Ве(ОН)2 = Na2BeО2 + 2H2O

NaOH + NaHSO4 = Na2SO4 + H2O

Амфотерный гидроксид Ве(ОН)2 ( или H2BeО2) реагирует с основным оксидом, основанием, кислотным оксидом и кислотой :

H2BeО2 + К2О = К2ВеО2 + Н2О

H2BeО2 + 2NaOH = Na2BeО2 + 2H2O

Амфотерный гидроксид Ве(ОН)2 при взаимодействии с основным оксидом и щелочью проявляет свойства кислоты H2BeО2:

3Ве(ОН)2 + Р2О5 = Ве3(РО4)2 + ЗН2О

Ве(ОН)2 + H2SO4 = BeSO4 + 2Н2О

Амфотерный гидроксид Ве(ОН)2 при взаимодействии с кислотным оксидом и кислотой проявляет основные свойства.

Кислая соль NaHSO4 реагирует с основным оксидом и основанием:

2NaHSO4 + К2О = Na2SO4 + K2SO4 + Н2О

NaHSO4 + NaOH = Na2SO4 + H2O

Следовательно, из всех приведенных веществ попарно не взаимодействуют только К2О и NaOH, поскольку основные оксиды не вступают в реакции с основаниями.

Пример 3. Объясните закономерность в изменении кислотно-основных свойств гидроксидов элементов третьего периода Периодической системы
Д.И. Менделеева в их высших степенях окисления.

Р е ш е н и е. 1) Введем понятие «гидроксиды». Гидроксиды – это сложные вещества, в состав которых входит гидроксильная группа ОН–. Условно класс гидроксидов можно описать с помощью общей формулы Э−О−Н (Э – химический элемент).

2) Гидроксиды делят на три группы: основные, кислотные и амфотерные. Рассмотрим, как определяется принадлежность гидроксидов к кислотам, основаниям или амфотерным гидроксидам. Принадлежность гидроксида к классу кислот или оснований определяется местом разрыва химических связей в Э−О−Н. Если разрывается связь О−Н (Э −О ↓−Н → Н+ + ЭО-), то такой гидроксид относится к классу кислот, поскольку при разрыве связи образуется ион H+ – носитель кислотных свойств. Если разрывается связь Э −О (Э ↓−О−Н → Э+ + ОН–), то гидроксид относится к классу оснований, так как образуется ион ОН– – носитель основных свойств. Если же, в зависимости от среды, разрываются обе связи Э−О и О−Н, то такие гидроксиды проявляют двойственность свойств и называются амфотерными.

3) Место разрыва химической связи в гидроксиде Э−О−Н зависит от положения элемента в Периодической системе, что и определяет относительную прочность связи между Э−О и О−Н. Силы притяжения между противоположно заряженными частицами тем значительнее, чем больше заряд каждой из них и меньше радиус.

4) Записываем формулы гидроксидов элементов третьего периода Периодической системы в их высших степенях окисления (высшая степень окисления атома элемента соответствует номеру группы):

NaOH — Mg(OH)2 — А1(ОН)3 — H2SiО3 — HNO3 — H2SO4 — НС1О4

5) Сравниваем относительную прочность связей Э−O и О−Н у высших гидроксидов третьего периода, учитывая, что при переходе от Na к CI наблюдается уменьшение радиуса атома. Благодаря своим малым размерам ион водорода Н+ в NaOH и Mg(OH)2 сильнее взаимодействует с кислородом, чем ион металла. Вследствие этого менее прочными оказываются связи Na−О и Mg−О, поэтому NaOH и Mg(OH)2 являются основаниями. В результате дальнейшего увеличения заряда и уменьшения радиуса атома при переходе к А1 связи А1−О и О−Н становятся близки по прочности, и А1(ОН)3 является типичным амфотерным гидроксидом. Наконец, у последних четырех соединений вследствие еще большего увеличения заряда и уменьшения радиуса атомов заметно увеличивается прочность связи Э−О и уменьшается прочность связи О−Н, поэтому гидроксиды H2SiO3, HNO3, H2SO4 и НСlO4 являются кислотами.


источники:

http://chem.ru/oksid-svinca-ii.html

http://ftoe.ru/elec6/index2.htm